(12分)(12分)經(jīng)過點(diǎn)作直線交雙曲線于、兩點(diǎn),且 為 中點(diǎn).
(1)求直線的方程 ;(2)求線段的長.
(1); (2) 。
解析試題分析:(1)在已知雙曲線方程及弦中點(diǎn)的情況下可以采用點(diǎn)差法求直線的斜率,進(jìn)而得到弦所在直線的方程.作差整后得一般表達(dá)式為.
(2)求弦長問題要把直線方程與雙曲線方程聯(lián)立借助弦長公式來求解.
(1)設(shè),則,由,
得所以 ,直線L的方程為
---------5分
經(jīng)檢驗直線與雙曲線有公共點(diǎn),所以弦所在直線方程為-----6分
(2) 把代入消去得
所以,從而得 ……… 12分
考點(diǎn):直線與雙曲線的位置關(guān)系,弦長,弦中點(diǎn)問題.
點(diǎn)評:(1)由雙曲線或橢圓方程及弦中點(diǎn)的情況下可以采用點(diǎn)差法求直線的斜率,進(jìn)而得到弦所在直線的方程.其作差后的一般形式為:.
(2)求弦長時要用到弦長公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)過點(diǎn)(1,0)直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),拋物線的頂點(diǎn)是.
(ⅰ)證明:為定值;
(ⅱ)若AB中點(diǎn)橫坐標(biāo)為2,求AB的長度及的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知焦點(diǎn)在軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)為圓心,1為半徑的圓相切,又知C的一個焦點(diǎn)與A關(guān)于直線對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線與雙曲線C的左支交于A,B兩點(diǎn),另一直線經(jīng)過M(-2,0)及AB的中點(diǎn),求直線在軸上的截距b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓.過點(diǎn)作圓的切線交橢圓于
,兩點(diǎn).
(1)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)橢圓()經(jīng)過點(diǎn),其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點(diǎn),且的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率。
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,已知橢圓的長軸為,過點(diǎn)的直線與軸垂直,直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個頂點(diǎn),且橢圓的離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上異于、的任意一點(diǎn),軸,為垂足,延長到點(diǎn)使得,連接并延長交直線于點(diǎn),為的中點(diǎn).試判斷直線與以為直徑的圓的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com