定義在D上的函數(shù)f(x),如果滿足:對(duì)于任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a·()x+()x;

(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域.并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;

(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

(3)試定義函數(shù)的下界,舉一個(gè)下界為3的函數(shù)模型,并進(jìn)行證明.

(1)當(dāng)a=1時(shí),f(x)=1+()x+()x=[()x]2,

∵f(x)在(-∞,0)上遞減,所以f(x)>f(0)=3,

即f(x)在(-∞,0)的值域?yàn)?3,+∞),

故不存在常數(shù)M>0,使|f(x)|≤M成立,

∴函數(shù)f(x)在(-∞,0)上不是有界函數(shù).

(2)由題意,|f(x)|≤3在[0,+∞)上恒成立.

-3≤f(x)≤3,-4-()x≤a·()x≤2-()x,

∴-4·2x-()x≤a≤2·2x-()x

在[0,+∞)上恒成立,

∴[-4·2x-()x]max≤a≤[2·2x-()x]min.

設(shè)2x=t,h(t)=-4t-,p(t)=2t-,

由x∈[0,+∞)得t≥1,設(shè)1≤t1<t2

h(t1)-h(huán)(t2)=>0,

p(t1)-p(t2)=<0,

所以h(t)在[1,+∞)上遞減,p(t)在[1,+∞)上遞增,h(t)在[1,+∞)上的最大值為h(1)=-5,p(t)在[1,+∞)上的最小值為p(1)=1,所以實(shí)數(shù)a的取值范圍為[-5,1].

(3)定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≥M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的下界

例如f(x)=3,有|f(x)|≥3;

證明:∵x∈R,|f(x)|=3≥3,

∴命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
已知函數(shù)f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)值域并說明函數(shù)f(x)在(-∞,0)上是否為有界函數(shù)?
(Ⅱ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)已知m>-1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=1+x+ax2
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),并說明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知m>-1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對(duì)任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個(gè)寬度為d的通道.給出下列函數(shù):①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
(1)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案