19.某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷(xiāo)售給A地10臺(tái),B地8臺(tái),已知從甲地調(diào)動(dòng)1臺(tái)至A地和B地的運(yùn)費(fèi)分別為4百元和8百元,從乙地調(diào)運(yùn)1臺(tái)至A地和B地的費(fèi)用分別為3百元和5百元.
(Ⅰ)設(shè)從乙地調(diào)運(yùn)x臺(tái)至A地,求總費(fèi)用y關(guān)于臺(tái)數(shù)x的函數(shù)解析式;
(Ⅱ)若總運(yùn)費(fèi)不超過(guò)90百元,問(wèn)共有幾種調(diào)運(yùn)方案;
(Ⅲ)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的運(yùn)費(fèi).

分析 (Ⅰ)根據(jù)調(diào)用的總費(fèi)用=從甲地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用和,列出函數(shù)關(guān)系式;
(Ⅱ)總費(fèi)用不超過(guò)9000元,讓函數(shù)值小于等于9000求出此時(shí)自變量的取值范圍,然后根據(jù)取值范圍來(lái)得出符合條件的方案;
(3)根據(jù)(Ⅰ)中的函數(shù)式以及自變量的取值范圍即可得出費(fèi)用最小的方案.

解答 解:(Ⅰ)y=300x+(6-x)×500+(10-x)×400+(2+x)×800=200x+8600
定義域?yàn)閧x|0≤x≤6,x∈N}(4分)
(Ⅱ)由200x+8600≤9000得x≤2∵x∈N.∴x=0,1,2
故有三種調(diào)運(yùn)方案;(8分)
(Ⅲ)由一次函數(shù)的性質(zhì)知,當(dāng)x=0時(shí),總運(yùn)算最低,ymin=8600元.
即從乙地調(diào)6臺(tái)給B地,甲地調(diào)10臺(tái)給A地.
調(diào)2臺(tái)給B地的調(diào)運(yùn)方案總費(fèi)用最低,最低費(fèi)用8600元.(12分)

點(diǎn)評(píng) 本題重點(diǎn)考查函數(shù)模型的構(gòu)建,考查利用一次函數(shù)的有關(guān)知識(shí)解答實(shí)際應(yīng)用題,解答一次函數(shù)的應(yīng)用問(wèn)題中,要注意自變量的取值范圍還必須使實(shí)際問(wèn)題有意義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.身高互不相同的9位同學(xué)站成一排照相,并約定自中間(左數(shù)第5個(gè)位置)向兩邊按身高由高到低的順序站位,若身高排第4高的同學(xué)與身高最高的同學(xué)相鄰,則不同的站位順序有20種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)等于長(zhǎng)軸長(zhǎng)的一半,橢圓C上的點(diǎn)到右焦點(diǎn)F的最短距離為2-$\sqrt{3}$,直線l:y=x+m與橢圓C交于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若△AOB的面積為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知直線l:ax+y-4=0過(guò)點(diǎn)(-1,2),則直線l的斜率為(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)y=x3-ax2+4在(1,3)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的取值范圍是$[\frac{9}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,已知點(diǎn)D為AB邊的中點(diǎn),點(diǎn)N在線段CD上,且$\overrightarrow{CN}$=2$\overrightarrow{ND}$,若$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ$\overrightarrow{AB}$,則λ=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)②③④.(填入所有正確性質(zhì)的序號(hào))
①最大值為$\sqrt{3}$,圖象關(guān)于直線x=-$\frac{π}{3}$對(duì)稱(chēng);
②圖象關(guān)于y軸對(duì)稱(chēng);
③最小正周期為π;
④圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱(chēng);
⑤在(0,$\frac{π}{3}$)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.選擇合適的抽樣方法抽樣,寫(xiě)出抽樣過(guò)程.
(1)有30個(gè)籃球,其中甲廠生產(chǎn)的有21個(gè),乙廠生產(chǎn)的有9個(gè),抽取10個(gè)入樣.
(2)有甲廠生產(chǎn)的30個(gè)籃球,其中一箱21個(gè),另一箱9個(gè),抽取3個(gè)入樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.關(guān)于x的不等式ax2+x+b>0的解集為(1,2),則a+b=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案