【題目】已知函數(shù),,其中是自然常數(shù).

(1)判斷函數(shù)內(nèi)零點的個數(shù),并說明理由;

(2),,使得不等式成立,試求實數(shù)的取值范圍.

【答案】(1) 存在1個零點;理由見解析.

(2) .

【解析】分析:(1)內(nèi)零點的個數(shù)1,求得的導數(shù),判斷符號,可得單調(diào)性,再由函數(shù)零點存在定理,即可得到結(jié)論;
(2)由題意可得,即 ,分別求得上的單調(diào)性,可得最值,解的不等式,即可得到所求范圍.

詳解:

(1)函數(shù)上的零點的個數(shù)為1,理由如下:

因為,所以,

因為,所以,所以函數(shù)上單調(diào)遞增.

因為,,

根據(jù)函數(shù)零點存在性定理得函數(shù)上存在1個零點.

(2)因為不等式等價于

所以,,使得不等式成立,等價于

,即

時,,故在區(qū)間上單調(diào)遞增,

所以當時,取得最小值,又,

時,,,所以,

故函數(shù)在區(qū)間上單調(diào)遞減.

因此,當時,取得最大值,所以,所以

所以實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學生進行投籃訓練,每人投10次,投中的次數(shù)統(tǒng)計如下表:

學生

1號

2號

3號

4號

5號

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統(tǒng)計數(shù)據(jù)看,甲、乙兩個班哪個班成績更穩(wěn)定用數(shù)字特征說明;

(2)在本次訓練中,從兩班中分別任選一個同學,比較兩人的投中次數(shù),求甲班同學投中次數(shù)高于乙班同學投中次數(shù)的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點,求證: 平面

(Ⅱ)若, ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,DAE的中點,C是線段BE上的一點,且,,將沿AB折起使得二面角是直二面角.

(l)求證:CD平面PAB;

(2)求直線PE與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點在軸上,中心在坐標原點,拋物線的焦點在軸上,頂點在坐標原點,在、上各取兩個點,將其坐標記錄于表格中:

(1)求、的標準方程;

(2)已知定點,為拋物線上的一點,其橫坐標為,拋物線在點處的切線交橢圓兩點,求面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ab為正實數(shù).

(1)求證:ab;

(2)利用(1)的結(jié)論求函數(shù)y(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是( )

A. 在數(shù)列|中,由此歸納出的通項公式

B. 由平面三角形的性質(zhì),推測空間四面體性質(zhì)

C. 某校高二共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人

D. 兩條直線平行,同旁內(nèi)角互補,如果是兩條平行直線的同旁內(nèi)角,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是

查看答案和解析>>

同步練習冊答案