【題目】(本小題滿分12分)某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學生進行投籃訓練,每人投10次,投中的次數(shù)統(tǒng)計如下表:
學生 | 1號 | 2號 | 3號 | 4號 | 5號 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(1)從統(tǒng)計數(shù)據(jù)看,甲、乙兩個班哪個班成績更穩(wěn)定(用數(shù)字特征說明);
(2)在本次訓練中,從兩班中分別任選一個同學,比較兩人的投中次數(shù),求甲班同學投中次數(shù)高于乙班同學投中次數(shù)的概率.
【答案】(1)甲更穩(wěn)定;(2).
【解析】
試題分析:(1)計算平均數(shù),甲乙兩個班的平均值相等,計算方差可知甲班的方差較小,因此甲班的成績比較穩(wěn)定;(2)分析題意可知,總共的基本事件共有,而符合題意的基本事件有個,故所求概率為.
試題解析:(1)兩個班數(shù)據(jù)的平均值都為,
甲班的方差,
乙班的方差,∵,甲班的方差較小,∴甲班的成績比較穩(wěn)定;(2)甲班到號記作,,,,,乙班到號記作,,,,,從兩班中分別任選一個同學,得到的基本樣本空間由個基本事件組成,這個是等可能的;將“甲班同學投中次數(shù)高于乙班同學投中次數(shù)”記作,則,由個基本事件組成,∴甲班同學投中次數(shù)高于乙班同學投中次數(shù)的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,,成立,求的取值范圍;
(Ⅲ)設曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束.設甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時甲的投籃次數(shù)ξ的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求的值域.
【答案】(1)對稱軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對稱軸為,最小正周期;
(2)當時,,
因為在單調(diào)遞增,在單調(diào)遞減,
在取最大值,在取最小值,
所以,
所以.
【點睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前項和為,公比,,.
(1)求等比數(shù)列的通項公式;
(2)設,求的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù)y=cos2x+1的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點的個數(shù),并說明理由;
(2),,使得不等式成立,試求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com