【題目】下面幾種推理過程是演繹推理的是( )
A. 在數(shù)列|中,由此歸納出的通項(xiàng)公式
B. 由平面三角形的性質(zhì),推測空間四面體性質(zhì)
C. 某校高二共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人
D. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果和是兩條平行直線的同旁內(nèi)角,則
【答案】D
【解析】分析:演繹推理是由普通性的前提推出特殊性結(jié)論的推理.其形式在高中階段主要學(xué)習(xí)了三段論:大前提、小前提、結(jié)論,由此對四個命題進(jìn)行判斷得出正確選項(xiàng).
詳解:A在數(shù)列{an}中,a1=1,,通過計(jì)算a2,a3,a4由此歸納出{an}的通項(xiàng)公式”是歸納推理.
B選項(xiàng)“由平面三角形的性質(zhì),推出空間四邊形的性質(zhì)”是類比推理
C選項(xiàng)“某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人數(shù)超過50人”是歸納推理;;
D選項(xiàng)選項(xiàng)是演繹推理,大前提是“兩條直線平行,同旁內(nèi)角互補(bǔ),”,小前提是“∠A與∠B是兩條平行直線的同旁內(nèi)角”,結(jié)論是“∠A+∠B=180°,是演繹推理.
綜上得,D選項(xiàng)正確
故選:D .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點(diǎn)的個數(shù),并說明理由;
(2),,使得不等式成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間[2,3]上有最大值1.
(1)求的值;
(2)求函數(shù)在區(qū)間上的值域;
(3)若在[2,4]上單調(diào),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為,中邊所對的角為,經(jīng)測量已知,.
(1)霍爾頓發(fā)現(xiàn)無論多長,為一個定值,請你驗(yàn)證霍爾頓的結(jié)論,并求出這個定值;
(2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記與的面積分別為和,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中
①若,則函數(shù)在取得極值;
②直線與函數(shù)的圖像不相切;
③若(為復(fù)數(shù)集),且,則的最小值是3;
④定積分.
正確的有__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求b的值;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(3)解關(guān)于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com