【題目】把下列演繹推理寫成三段論的形式.
(1)在標(biāo)準(zhǔn)大氣壓下,水的沸點(diǎn)是100℃,所以在標(biāo)準(zhǔn)大氣壓下把水加熱到100℃時(shí),水會(huì)沸騰;
(2)一切奇數(shù)都不能被2整除, 是奇數(shù),所以不能被2整除;
(3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),因此是周期函數(shù).
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】試題分析:(1)分割成大前提、小前提與結(jié)論三部分即可,(2)分割成大前提、小前提與結(jié)論三部分即可,(3)分割成大前提、小前提與結(jié)論三部分即可.
試題解析:(1)在標(biāo)準(zhǔn)大氣壓下,水的沸點(diǎn)是100℃,………………大前提
在標(biāo)準(zhǔn)大氣壓下把水加熱到100℃,…………………………………小前提
水會(huì)沸騰.………………………………………………………………結(jié)論
(2)一切奇數(shù)都不能被2整除, ……………………………………大前提
是奇數(shù), ……………………………………………………小前提
不能被2整除. ……………………………………………結(jié)論
(3)三角函數(shù)都是周期函數(shù),………………………………………大前提
是三角函數(shù),………………………………………………小前提
是周期函數(shù).………………………………………………結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ ,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)時(shí),證明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的單調(diào)減區(qū)間是。
(1)求的解析式;
(2)若對(duì)任意的,關(guān)于的不等式在
時(shí)有解,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的長(zhǎng)軸長(zhǎng)為4,焦距為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn),過(guò)點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長(zhǎng)線QM交C于點(diǎn)B.
(i)設(shè)直線PM、QM的斜率分別為k、,證明為定值.
(ii)求直線AB的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=
(1)求f(-2);
(2)當(dāng)x<-3時(shí),求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,且 的最小值為t.
(1)求實(shí)數(shù)t的值;
(2)解關(guān)于x的不等式:|2x+1|+|2x﹣1|<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)
是棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)證明: , , 不可能成等差數(shù)列;
(2)證明: , , 不可能為同一等差數(shù)列中的三項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與的直角坐標(biāo)方程;
(2)當(dāng)與有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com