6.如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD.
(1)證明:AC⊥PB;
(2)若PD=3,AD=2,求異面直線PB與AD所成角的余弦值.

分析 (1)線線垂直轉(zhuǎn)化為線面垂直來證明.PD⊥平面ABCD,可得PD⊥AC,BD⊥AC,又PD∩BD=D,可得AC⊥平面PBD.可證AC⊥PB;
(2)通過ABCD是正方形找到AD的平行線BC,BC與直線PB所成角,就是異面直線PB與AD所成角.

解答 (1)證明:連接BD.
∵PD⊥平面ABCD,
∴PD⊥AC;
∵底面ABCD是正方形,
∴BD⊥AC,又PD∩BD=D,
∴AC⊥平面PBD,
∵PB?平面PBD,
∴AC⊥PB.
解:(2)PD⊥平面ABCD,△PDB是直角三角形;
在Rt△PDB中,$PB={3^2}+{(2\sqrt{2})^2}=\sqrt{17}$.
∴PD⊥BC,又BC⊥CD,
∴BC⊥平面PCD,∴BC⊥PC.
∵BC∥AD,
∴∠PBC即為異面直線PB與AD所成的角,
∴$cos∠PBC=\frac{BC}{PB}=\frac{{2\sqrt{17}}}{17}$.

點評 本題考查線線垂直的證明轉(zhuǎn)化為線面垂直證明,同時考查了兩條異面直線所成角的大小的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{3}$x3-ex2+mx+1,g(x)=$\frac{{lnx+{2^{-1}}}}{{{e^{2x}}}}$.
(1)函數(shù)f(x)在點(1,f(1))處的切線與直線(1-2e)x-y+4=0平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意的x1,x2∈(0,+∞),若$\frac{{g({x_1})-{f^'}({x_2})}}{{{e^{x_1}}-1}}$<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是R上的奇函數(shù),且對任意實數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實數(shù)a的取值范圍是(  )
A.a>1B.a<-1C.a>2D.a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1、F分別是棱AD、AA1、AB的中點.
(1)證明:直線EE1∥平面FCC1;
(2)求直線FC1與平面B1BCC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.方程3-x=2+3x+1的解為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下六個寫法中:①{0}∈{0,1,2};  ②∅⊆{1,2};   ③∅∈{0}④{0,1,2}={2,0,1};  ⑤0∈∅;  ⑥A∩∅=A,正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一正方體截去兩個三棱錐后,所得幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8B.7C.$\frac{23}{3}$D.$\frac{22}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=ax-a-1(a>0且a≠1)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知p:x2-6x+5≤0,q:(x-m+1)•(x-m-1)≤0,若?p是?q的充分不必要條件,求實數(shù)m的取值范圍.
(2)已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:設(shè)函數(shù)y=$\left\{\begin{array}{l}2x-2a,(x≥2a)\\ 2a,(x<2a)\end{array}$函數(shù)y>1恒成立,若p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案