如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(1)求證:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求點(diǎn)C到平面A1BD的距離.
(1)證明過(guò)程見(jiàn)解析;(2);(3)
解析試題分析:(1)取中點(diǎn),連結(jié),取中點(diǎn),以為原點(diǎn),,,的方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/1/1gzc53.png" style="vertical-align:middle;" />軸的正方向建立空間直角坐標(biāo)系,寫出坐標(biāo),進(jìn)而得出向量坐標(biāo),利用向量垂直時(shí)坐標(biāo)關(guān)系可證明,,可得平面;(2)令平面的法向量為,則,可得一法向量,由(1)為平面的法向量,那么二面角的余弦值即為,;(3)可求,.為平面的法向量,所以C到平面A1BD的距離.
解:(1)取中點(diǎn),連結(jié).為正三角形,,
在正三棱柱中,平面平面,
平面,
取中點(diǎn),以為原點(diǎn),,,的方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/1/1gzc53.png" style="vertical-align:middle;" />軸的正方向建立空間直角坐標(biāo)系,則,,,,,
,,.
,,
,,
平面. 4分
(2)設(shè)平面的法向量為,
,,
,,
令得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
三棱錐及其側(cè)視圖、俯視圖如圖所示.設(shè),分別為線段,的中點(diǎn),為線段上的點(diǎn),且.
(1)證明:為線段的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面是平行四邊形,,,分別是棱的中點(diǎn).
(1)證明平面;
(2)若二面角P-AD-B為,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面 ,,是的中點(diǎn),作交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過(guò)軸的平面切開(kāi)后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長(zhǎng)A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是邊長(zhǎng)為2的正方形,,ED=1,//BD,且.
(1)求證:BF//平面ACE;
(2)求證:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com