觀察下面的數(shù)陣,容易看出,第n行最右邊的數(shù)是n2,12的位置是第四行的第三個,記作(4,3);那么2014的位置是
 

考點:歸納推理
專題:推理和證明
分析:由已知中的數(shù)陣,第n行最右邊的數(shù)是n2,確定2014所在的行數(shù),列數(shù),可得2014的位置.
解答: 解:∵第n行最右邊的數(shù)是n2,
442=1936<2014,452=2025>2014,
故2014位于第45行,
又∵2014-1936=78,
故2014是該行的第78個數(shù)字,
故答案為:(45,78)
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(-∞,0)上為增函數(shù)的是(  )
A、y=-2x
B、y=
2
x
C、y=-x2
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某中學(xué)高二年級學(xué)生是愛好體育還是愛好文娛進(jìn)行調(diào)查,共調(diào)查了50人,所得2×2列聯(lián)表如下:
愛好
體育
愛好
文娛
合計
男生15AB
女生C10D
合計20E50
(1)求出2×2列聯(lián)表中A、B、C、D、E的值;
(2)若已選出指定的三個男生甲、乙、丙;兩個女生M,N,現(xiàn)從中選兩人參加某項活動,求選出的兩個人恰好是一男一女的概率;
(3)試用獨(dú)立性檢驗方法判斷性別與愛好體育關(guān)系?
參考公式:①K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

②獨(dú)立性檢驗概率表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),對任意x1,x2∈(0,+∞)都有f(
x1
x2
)=f(x1)-f(x2),且當(dāng)x>1時,f(x)>0.
(Ⅰ)求f(1)的值;
(Ⅱ)求證:f(x)在(0,+∞)上是增函數(shù);
(Ⅲ)若f(2)=1,求不等式f(x)-f(
1
x-3
)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(
1
2
x+
π
2
)是( 。
A、周期為2π的偶函數(shù)
B、周期為4π的奇函數(shù)
C、周期為4π的偶函數(shù)
D、周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=ax+1在[1,2]上的最大值與最小值的差為2,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2<x≤9},B={x|a≤x<3a}.
(1)當(dāng)a=2時,求A∩B,A∪B;
(2)若A∪B=A,求a的取值范圍;
(3)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下一列數(shù):
1
1×2
,
1
2×3
1
3×4
,…,
1
n(n+1)
,…其中前n個數(shù)的和記作sn,計算s1,s2,s3,s4的值,觀察這些計算結(jié)果存在的規(guī)律,推測出計算sn的公式,并用數(shù)學(xué)歸納法作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個等差數(shù)列中,a15=33,a25=66,則a35=( 。
A、99B、49.5
C、48D、49

查看答案和解析>>

同步練習(xí)冊答案