【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)若,不等式對(duì)恒成立,求的取值范圍.
【答案】(1)分類討論,詳見解析;(2).
【解析】
(1)先對(duì)函數(shù)進(jìn)行求導(dǎo)得,再對(duì)進(jìn)行分類討論,解導(dǎo)數(shù)不等式,從而得到函數(shù)的單調(diào)區(qū)間;
(2)由,將對(duì)恒成立等價(jià)于對(duì)恒成立.構(gòu)造函數(shù),取,則,進(jìn)而得到函數(shù)的最小值為2,即可得到到的取值范圍.
(1).
當(dāng)時(shí),令,得;令,得.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
當(dāng)時(shí)令,得;令,得.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)因?yàn)?/span>,所以對(duì)恒成立等價(jià)于對(duì)恒成立.設(shè),,
令,得;令,得.
所以,所以.取,
則,即,
所以.
設(shè),因?yàn)?/span>,,
所以方程必有解,
所以當(dāng)且僅當(dāng)時(shí),函數(shù)得最小值,且最小值為2,所以,即m的取值范圍為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果存在函數(shù)(,為常數(shù)),使得對(duì)一切實(shí)數(shù)都成立則稱為函數(shù)的一個(gè)承托函數(shù).現(xiàn)有如下函數(shù):①;②;③;④.則存在承托函數(shù)的的序號(hào)為______.(填入滿足題意的所有序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E∶y2=2px(p>0)的焦點(diǎn)為F,過F且斜率為1的直線交E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,其垂直平分線交x軸于點(diǎn)C,MN⊥y軸于點(diǎn)N.若四邊形CMNF的面積等于7,則E的方程為( )
A.y2=xB.y2=2x
C.y2=4xD.y2=8x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),設(shè)函數(shù),若存在區(qū)間,使得函數(shù)在上的值域?yàn)?/span>,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、、與、、、是8個(gè)不同的實(shí)數(shù),若方程有有限多個(gè)解,則此方程的解最多有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對(duì)稱.
(1)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,平面,,,,是的中點(diǎn),是線段上的一點(diǎn),且.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com