【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對稱.
(1)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍;
(2)若,求的取值范圍.
【答案】(1);(2).
【解析】
(1)令,問題轉(zhuǎn)化為關(guān)于的方程在上有實(shí)數(shù)解,由參變量分離法得出,從而可得出實(shí)數(shù)的取值范圍即為函數(shù)在上的值域,利用二次函數(shù)的基本性質(zhì)求出即可;
(2)求出函數(shù)的反函數(shù)的解析式,可得出,由題意得出,利用對數(shù)函數(shù)的單調(diào)性以及真數(shù)大于零這些條件得出關(guān)于實(shí)數(shù)的不等式組 ,解出即可.
(1)令,則關(guān)于的方程在上有實(shí)數(shù)解,
得,則實(shí)數(shù)的取值范圍即為函數(shù)在上的值域,
二次函數(shù)的圖象開口向上,對稱軸為直線,
所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),.
因此,實(shí)數(shù)的取值范圍是;
(2)由題意知,函數(shù)與函數(shù)互為反函數(shù),
由,得,,
由,得,
則,解得,因此,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價(jià)是元/米,是窄長廊,造價(jià)是元/米,兩段長廊的總造價(jià)為120萬元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)()的反函數(shù)為,.
(1)求;
(2)若函數(shù)的圖象與直線有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲盒內(nèi)有大小相同的2個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲,乙兩個(gè)盒內(nèi)各取2個(gè)球.
(1)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(2)設(shè)ξ為取出的4個(gè)球中紅球的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的最大值為,最小值為,則( )
A.存在實(shí)數(shù),使
B.存在實(shí)數(shù),使
C.對任意實(shí)數(shù),有
D.對任意實(shí)數(shù),有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)到點(diǎn)的距離比到軸的距離大1個(gè)單位長度.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當(dāng)取最小值時(shí),證明:恰有一個(gè)零點(diǎn)且存在遞增的正整數(shù)數(shù)列,使得成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com