【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大;
(2)若a=4,求△ABC周長的取值范圍.
【答案】
(1)解:將(2b﹣c)cosA=acosC代入正弦定理得:
(2sinB﹣sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA= ,又A∈(0,180°),
則A的度數(shù)為60°
(2)解:由余弦定理a2=b2+c2﹣2bccosA,可得:b2+c2﹣bc=(b+c)2﹣3bc=16,
bc≤( )2,當且僅當b=c=4時等號成立,
∴16=(b+c)2﹣3bc≥=(b+c)2﹣3( )2= (b+c)2,
∴b+c≤8,
∵b+c>4,
∴△ABC的周長取值范圍為:(8,12]
【解析】(1)利用正弦定理化簡已知的等式,再利用兩角和的正弦函數(shù)公式及誘導公式化簡,根據(jù)sinB不為0,得到cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).(2)利用余弦定理,基本不等式,三角形兩邊之和大于第三邊即可得解△ABC周長的取值范圍.
【考點精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點O逆時針旋轉 得到半徑OB.設∠POA=x(0<x<π), .
(1)若 ,求點B的坐標;
(2)求函數(shù)f(x)的最小值,并求此時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:x﹣2y+3=0和l2:x+2y﹣9=0的交點為A.
(1)求過點A,且與直線2x+3y﹣1=0平行的直線方程;
(2)求過點A,且傾斜角為直線l1傾斜角2倍的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且an=2﹣2Sn , 數(shù)列{bn}為等差數(shù)列,且b5=14,b7=20.
(1)求數(shù)列{an}的通項公式;
(2)若cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U為R,集合A={x|x2<4},B= (x﹣2)},則下列關系正確的是( )
A.A∪B=R
B.A∪(∪B)=R
C.(∪A)∪B=R
D.A∩(∪B)=A
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點,P,Q為長方形ABCD邊AB,BC(不含端點)上的一點.現(xiàn)公園管理處擬修建觀光車道P﹣Q﹣N﹣M﹣P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設BP=x(km),BQ=y(km),
(1)試寫出y關于x的函數(shù)關系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側.經測算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米.最低點D到地面的距離6.5米.假設某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最下正周期為π,且點P( ,2)是該函數(shù)圖象的一個人最高點.
(1)求函數(shù)f(x)的解析式;
(2)若x∈[﹣ ,0],求函數(shù)y=f(x)的值域;
(3)把函數(shù)y=f(x)的圖線向右平移θ(0<θ< )個單位,得到函數(shù)y=g(x)在[0, ]上是單調增函數(shù),求θ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com