已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且tanA+tanB=
3
-
3
tanAtanB,則角C的大小為( 。
分析:利用兩角和與差的正切函數(shù)公式表示出tan(A+B),將已知等式變形后代入并利用誘導(dǎo)公式求出tanC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答:解:∵tanA+tanB=
3
-
3
tanAtanB=
3
(1-tanAtanB),
∴tan(A+B)=
tanA+tanB
1-tanAtanB
=
3
,即tanC=-tan(A+B)=-
3

∵C為三角形的內(nèi)角,
∴C=120°.
故選B
點(diǎn)評(píng):此題考查了兩角和與差的正切函數(shù)公式,誘導(dǎo)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案