9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)函數(shù),則實數(shù)m的取值范圍是[$\frac{1}{3}$,+∞).

分析 先求f′(x)=3x2+2x+m,而f(x)在R上是單調(diào)函數(shù),所以二次函數(shù)f′(x)≥0在R上恒成立,所以△≤0,這樣即可求出實數(shù)m的范圍.

解答 解:f′(x)=3x2+2x+m;
∵f(x)在R上是單調(diào)函數(shù);
∴f′(x)≥0對于x∈R恒成立;
∴△=4-12m≤0;
∴m≥$\frac{1}{3}$,
∴實數(shù)m的取值范圍為[$\frac{1}{3}$,+∞),
故答案為:[$\frac{1}{3}$,+∞).

點評 考查函數(shù)單調(diào)性和函數(shù)導數(shù)符號的關(guān)系,熟悉二次函數(shù)的圖象,一元二次不等式的解集為R時判別式△的取值情況.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市對全市10萬名市民進行了漢字聽寫測試,調(diào)查數(shù)據(jù)顯示市民的成績服從正態(tài)分布N(168,16).現(xiàn)從某社區(qū)居民中隨機抽取50名市民進行聽寫測試,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第一組[160,164),第二組[164,168),…,第六組[180,184),如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第1組市民中男性有3名,組織方要從第1組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性群眾的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(3-2x-x2)(2x-1)6的展開式中,含x3項的系數(shù)為-588.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.方程互化
(1)2x+3y-1=0(化為極坐標方程)
 (2)ρ=2cosθ+4sinθ(化為直角坐標方程)
(3)$\left\{\begin{array}{l}{x=3-2t}\\{y=1-4t}\end{array}\right.$(t為參數(shù))(化為普通方程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個幾何體的三視圖,則該幾何體的體積是( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知p:對?m∈[-1,1],不等式${a^2}-5a-3≥\sqrt{{m^2}+8}$恒成立;q:?x∈R使不等式x2+ax+2<0成立,若p是真命題,q是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={1,2,3,…,2017},B={${a_1},{a_{{2_{\;}}}},{a_3},{a_4},{a_5}$}.若B⊆A,且對任意的i,j(i∈{1,2,3,4,5},j∈{1,2,3,4,5}),都有|ai-aj|≠1.則集合B的個數(shù)用組合數(shù)可以表示成( 。
A.C${\;}_{2014}^{5}$B.$C_{2013}^5$C.$C_{2012}^5$D.C${\;}_{2011}^{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知向量$\overrightarrow m=({{{log}_{\frac{1}{3}}}x,1-f(x)})$,$\overrightarrow n=({1,2+{{log}_3}x})$,且向量$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求函數(shù)y=f(x)的解析式及函數(shù)$y=f(cos(2x-\frac{π}{3}))$的定義域;
(Ⅱ)若函數(shù)g(θ)=-cos2θ-asinθ+2,存在a∈R,對任意${x_1}∈[{\frac{1}{27},3}]$,總存在唯一${θ_0}∈[{-\frac{π}{2},\frac{π}{2}}]$,使得f(x1)=g(θ0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案