5.已知二次函數(shù)f(x)=x2-2x+3
(Ⅰ)若函數(shù)$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值為3,求實(shí)數(shù)m的值;
(Ⅱ)若對(duì)任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求實(shí)數(shù)k的取值范圍.

分析 (Ⅰ)令t=log3x,(-1≤t≤1),則y=(t+m-1)2+2,由題意可得最小值只能在端點(diǎn)處取得,分別求得m的值,加以檢驗(yàn)即可得到所求值;
(Ⅱ)判斷f(x)在(2,4)遞增,設(shè)x1>x2,則f(x1)>f(x2),原不等式即為f(x1)-f(x2)<k(x1-x2),即有f(x1)-kx1<f(x2)-kx2,由題意可得g(x)=f(x)-kx在(2,4)遞減.由g(x)=x2-(2+k)x+3,求得對(duì)稱軸,由二次函數(shù)的單調(diào)區(qū)間,即可得到所求范圍

解答 解(Ⅰ)令t=log3x+m,∵$x∈[\frac{1}{3},3]$,∴t∈[m-1,m+1],
從而y=f(t)=t2-2t+3=(t-1)2+2,t∈[m-1,m+1]
當(dāng)m+1≤1,即m≤0時(shí),${y_{min}}=f(m+1)={m^2}+2=3$,
解得m=-1或m=1(舍去),
當(dāng)m-1<1<m+1,即0<m<2時(shí),ymin=f(1)=2,不合題意,
當(dāng)m-1≥1,即m≥2時(shí),${y_{min}}=f(m-1)={m^2}-4m+6=3$,
解得m=3或m=1(舍去),
綜上得,m=-1或m=3,
(Ⅱ)不妨設(shè)x1<x2,易知f(x)在(2,4)上是增函數(shù),故f(x1)<f(x2),
故|f(x1)-f(x2)|<k|x1-x2|可化為f(x2)-f(x1)<kx2-kx1
即f(x2)-kx2<f(x1)-kx1(*),
令g(x)=f(x)-kx,x∈(2,4),即g(x)=x2-(2+k)x+3,x∈(2,4),
則(*)式可化為g(x2)<g(x1),即g(x)在(2,4)上是減函數(shù),
故$\frac{2+k}{2}≥4$,得k≥6,
故k的取值范圍為[6,+∞)

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用換元法和二次函數(shù)的最值的求法,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用構(gòu)造法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC中,a、b、c分別是角A、B、C的對(duì)邊,有b2+c2=a2+bc
(1)求角A的大。
(2)求$f(x)=sin(x-A)+\sqrt{3}cosx$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若θ為第四象限的角,且$sinθ=-\frac{1}{3}$,則cosθ=$\frac{2\sqrt{2}}{3}$;sin2θ=-$\frac{4\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$θ∈[{\frac{π}{2},π}]$,則$\sqrt{1+2sin({π+θ})sin({\frac{π}{2}-θ})}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(x-1)^2},x≥0\\{2^x},\;x<0\end{array}\right.$若f(x)在$(a,a+\frac{3}{2})$上既有最大值又有最小值,則實(shí)數(shù)a的取值范圍是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.i是虛數(shù)單位,則$|{\frac{5+3i}{4-i}}|$等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)與拋物線x=$\frac{{y}^{2}}{12}$的焦點(diǎn)重合,則該雙曲線的焦點(diǎn)到其漸近線的距離為( 。
A.4$\sqrt{2}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出下列結(jié)論:
①(cosx)′=sinx;
②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;
③若y=$\frac{1}{{x}^{2}}$,則y′=-$\frac{1}{x}$;
④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,nan+1=2(n+1)an
(1)記bn=$\frac{{a}_{n}}{n}$,求數(shù)列{bn}的通項(xiàng)bn;      
(2)求通項(xiàng)an及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案