是兩條不同的直線,、是兩個(gè)不同的平面,則下列命題中不正確的是(     )
A.若,則
B.若,,則
C.若,則
D.若、所成的角相等,則
D

試題分析:A. 若,,則,此命題正確,此為線面垂直的性質(zhì)定理;
B. 若,,則,此命題正確,此為線面垂直的性質(zhì)定理;
C. 若,則,此命題正確,我們可以由面面垂直的判定定理推出;
D. 若,、所成的角相等,則,此命題錯(cuò)誤。
點(diǎn)評(píng):本題考查了空間想象能力,做題時(shí)要注意特殊情況,屬于基礎(chǔ)題型。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在三棱錐S,,,,.

(1)證明。
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖,在三棱錐S—ABC中,是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點(diǎn)。

⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點(diǎn)B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的長(zhǎng)軸為,短軸為,將橢圓沿y軸折成一個(gè)二面角,使得點(diǎn)在平面上的射影恰好為橢圓的右焦點(diǎn),則該二面角的大小為(  。.
A.75°B.60°  C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平行六面體ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中點(diǎn)。

給出下列四個(gè)命題:①∠BCC1為異面直線CC1所成的角;②三棱錐A1ABD是正三棱錐;③CE⊥平面BB1D1D;④;⑤||=.其中正確的命題有_____________.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,直線(   )
A.異面且垂直B.異面但不垂直
C.相交且垂直D.相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示,在矩形中,的中點(diǎn),F(xiàn)為BC的中點(diǎn),O為AE的中點(diǎn),以AE為折痕將△ADE向上折起,使D到P點(diǎn)位置,且

(1)求證:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,分別為、的中點(diǎn).

(1)求證:
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案