A. | 2012 | B. | 2013 | C. | 2014 | D. | 2015 |
分析 求出$\frac{{{a_{n+1}}}}{a_n}=2$,從而數(shù)列{an}是等比數(shù)列,由a2=1,得到${a_n}=1×{2^{n-2}}$,由此能求出結(jié)果.
解答 解:因為${a_{n+1}}=2{a_n}(n∈{N^*})$,所以$\frac{{{a_{n+1}}}}{a_n}=2$,
所以數(shù)列{an}是等比數(shù)列,
因為a2=1,所以${a_n}=1×{2^{n-2}}$,
所以${a_{2015}}=1×{2^{2015-2}}={2^{2013}}$,
所以${log_2}{a_{2015}}={log_2}{2^{2013}}=2013$.
故選:B.
點評 本題考查等比數(shù)列的第2015項的對數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}π}}{3}$ | B. | $\frac{{4\sqrt{2}π}}{3}$ | C. | $2\sqrt{2}π$ | D. | $\frac{{8\sqrt{2}π}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,使得x2+4x+6≥0,為真命題 | B. | ¬p:?x∈R,使得x2+4x+6≥0,為假命題 | ||
C. | ¬p:?x∈R,使得x2+4x+6≥0,為真命題 | D. | ¬p:?x∈R,使得x2+4x+6≥0,為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com