【題目】已知在點處的切線與直線平行.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè).
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當(dāng)時,判斷函數(shù)有幾個零點,并給出證明.
【答案】(Ⅰ)1;(Ⅱ)1;詳見解析.
【解析】
Ⅰ求函數(shù)的導(dǎo)數(shù),計算時的導(dǎo)數(shù)即可求出a的值;Ⅱ求的導(dǎo)數(shù),討論當(dāng)和時的單調(diào)性,由單調(diào)性判斷最值即可得到b的最大值;化簡知0是的一個零點,利用構(gòu)造函數(shù)法討論和時,函數(shù)是否有零點,從而確定函數(shù)的零點情況.
解:Ⅰ函數(shù),則,
由題意知時,,即a的值為1;
Ⅱ,
所以,
當(dāng)時,若,則,,單調(diào)遞增,所以;
當(dāng)時,若,令,解得舍去,,
所以在內(nèi)單調(diào)遞減,,所以不恒成立,
所以b的最大值為1;
,顯然有一個零點為0,
設(shè),則;
當(dāng)時,無零點,所以只有一個零點0;
當(dāng)時,,所以在R上單調(diào)遞增,
又,,
由零點存在性定理可知,在上有唯一一個零點,
所以有2個零點;
綜上所述,時,只有一個零點,時,有2個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線與軸的交點,點在直線上,且滿足.當(dāng)點在圓上運動時,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過的直線交曲線于兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,函數(shù)的極大值為,求實數(shù)的值;
(2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形中,,,,為的中點,如圖將沿折到的位置,使,點在上,且,如圖2.
求證:平面;
求二面角的正切值;
在線段上是否存在點,使平面?若存在,確定的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:的離心率是,,分別為橢圓E的左右頂點,B為上頂點,的面積為直線l過點且與橢圓E交于P,Q兩點.
求橢圓E的標(biāo)準(zhǔn)方程;
求面積的最大值;
設(shè)直線與直線交于點N,證明:點N在定直線上,并寫出該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項正確的為( )
A.已知直線:,:,則的充分不必要條件是
B.命題“若數(shù)列為等比數(shù)列,則數(shù)列為等比數(shù)列”是假命題
C.棱長為正方體中,平面與平面距離為
D.已知為拋物線上任意一點且,若恒成立,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級),相對應(yīng)空氣質(zhì)量的七個類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對人體危害越大.
指數(shù) | 級別 | 類別 | 戶外活動建議 |
Ⅰ | 優(yōu) | 可正;顒 | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動. | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動. | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動. |
現(xiàn)統(tǒng)計邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時才會出現(xiàn)霧霾天氣,且此時出現(xiàn)霧霾天氣的概率為,請根據(jù)統(tǒng)計數(shù)據(jù),求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在矩形中,,,平面,且.
(1)問當(dāng)實數(shù)在什么范圍時,邊上能存在點,使得?
(2)當(dāng)邊上有且僅有一個點使得時,求二面角的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為菱形, , , , ,平面平面, , 為的中點, 為平面內(nèi)任一點.
(1)在平面內(nèi),過點是否存在直線使?如果不存在,請說明理由,如果存在,請說明作法;
(2)過, , 三點的平面將幾何體截去三棱錐,求剩余幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com