8.已知等比數(shù)列{an}滿足a2=2,a2•a5=32,Sn為等差數(shù)列{bn}的前n項(xiàng)和,b1=1,S5=25.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Tn

分析 (I)設(shè)等比數(shù)列{an}的公比為q,由a2=2,a2•a5=32,可得a5=16=${a}_{2}{q}^{3}$=2q3,解得q,利用等比數(shù)列的通項(xiàng)公式可得an.設(shè)等差數(shù)列{bn}的公差為d,利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出bn
(II)an+bn=(2n-1)+2n-1.利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(I)設(shè)等比數(shù)列{an}的公比為q,∵a2=2,a2•a5=32,
∴a5=16=${a}_{2}{q}^{3}$=2q3,解得q=2,
∴an=2×2n-2=2n-1
設(shè)等差數(shù)列{bn}的公差為d,∵b1=1,S5=25.∴5+$\frac{5×4}{2}$d=25,解得d=2.
∴bn=1+2(n-1)=2n-1.
(II)an+bn=(2n-1)+2n-1
∴數(shù)列{an+bn}的前n項(xiàng)和Tn=$\frac{n(1+2n-1)}{2}$+$\frac{{2}^{n}-1}{2-1}$=n2+2n-1.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,F(xiàn)為C的右焦點(diǎn),A(0,-2),直線FA的斜率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)設(shè)E(x0,y0)是C上一點(diǎn),從坐標(biāo)原點(diǎn)O向圓E:(x-x02+(y-y02=3作兩條切線,分別與C交于P,Q兩點(diǎn),直線OP,OQ的斜率分別是k1,k2,求證:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知曲線f(x)=ex-$\frac{1}{e^x}$與直線y=kx有且僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的最大值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若雙曲線C:mx2+y2=1的離心率為2k(k>0),其中k為雙曲線C的一條漸近線的斜率,則m的值為( 。
A.-$\frac{1}{3}$B.$\frac{-1-\sqrt{17}}{8}$C.-3D.$\frac{-1±\sqrt{17}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.隨機(jī)變量X~N(0,22),且P(-2<X≤0)=a,則P(X≤-2)=0.5-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c,sinA=$\frac{2\sqrt{2}}{3}$,則tan2$\frac{B+C}{2}$+sin2$\frac{A}{2}$=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,且a1=3,a1+a2+a3=12.
(1)數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3${\;}^{{a}_{n}}$,求證:數(shù)列{bn}是等比數(shù)列
(3)求證:$\frac{1}{(2{a}_{1}-5)^{2}}$+$\frac{1}{(2{a}_{2}-5)^{2}}$+…+$\frac{1}{(2{a}_{n}-5)^{2}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知點(diǎn)P在曲線y=$\frac{1}{{e}^{x}+1}$(其中e為自然對(duì)數(shù)的底數(shù))上運(yùn)動(dòng),則曲線在點(diǎn)P處的切線斜率最小時(shí)的切線方程為y=-$\frac{1}{4}$x+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{\frac{1-2x}{x-2}}$的定義域是M,函數(shù)N={x|1<x<a,a>1}.
(1)設(shè)U=R,a=2時(shí),求M∩(∁UN);
(2)當(dāng)M∪(∁UN)=U時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案