某公司一年購買某種貨物400噸,每次都購買噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則___ ____ 噸.

 

20

【解析】

試題分析:每次都購買噸,則需要購買次,

∵運(yùn)費(fèi)為萬/次,一年的總存儲(chǔ)費(fèi)用為萬元,

∴一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為×+萬元

×+,當(dāng)且僅當(dāng)4時(shí),取等號(hào),

噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最。

考點(diǎn):函數(shù)的應(yīng)用問題,基本不等式的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省日照市高三3月第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義在R上的函數(shù)滿足條件;①對(duì)任意的,都有;②對(duì)任意的;③函數(shù)的圖象關(guān)于y軸對(duì)稱.則下列結(jié)論正確的是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為.

(1)求數(shù)列,的通項(xiàng)公式;

(2)若,為數(shù)列的前項(xiàng)和,對(duì)恒成立,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

“實(shí)數(shù)”是“復(fù)數(shù)為虛數(shù)單位)的模為”的( )

A.充分非必要條件 B.必要非充分條件

C.充要條件 D.既非充分條件又不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)在中,角所對(duì)的邊為,且滿足

(1)求角的值;

(2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,函數(shù)上單調(diào)遞減.則的取值范圍是 ( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級(jí)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,過點(diǎn)且離心率為.

(1)求橢圓的方程;

(2)已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)M滿足,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級(jí)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知向量,則下列關(guān)系正確的是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

在演講比賽決賽中,七位評(píng)委給甲、乙兩位選手打分的莖葉圖如圖所示,但其中在處數(shù)據(jù)丟失.按照規(guī)則,甲、乙各去掉一個(gè)最高分和一個(gè)最低分,用分別表示甲、乙兩位選手獲得的平均分,則( )

A. B.

C. D.之間的大小關(guān)系無法確定

 

查看答案和解析>>

同步練習(xí)冊(cè)答案