(本小題滿分12分)
已知橢圓C中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過(guò)點(diǎn)且傾斜角余弦值為的直線交橢圓于A,B兩點(diǎn),交軸于M點(diǎn),又.
(1)求直線的方程;
(2)求橢圓C長(zhǎng)軸的取值范圍。

(1)  (2)

解析試題分析:解:(1)直線經(jīng)過(guò)點(diǎn)且傾斜角余弦值為
直線的方程為.
(2)設(shè)與橢圓交于,與軸交于M(1,0),由知:.
代入

      ①

                    ②
由①消去
,③
③代入②得
,綜合解得
橢圓C長(zhǎng)軸的取值范圍為
考點(diǎn):本試題考查了直線方程與橢圓的知識(shí)。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用已知中的點(diǎn)和斜率來(lái)借助于點(diǎn)斜式方程表示出直線的方程,同時(shí)能結(jié)合直線與橢圓的相交,聯(lián)立方程組,進(jìn)而結(jié)合韋達(dá)定理和判別式來(lái)求解表示出長(zhǎng)軸長(zhǎng),借助于參數(shù)a的范圍得到所求,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知橢圓的兩焦點(diǎn)在軸上, 且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成斜邊長(zhǎng)為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以AB為直徑的圓恒過(guò)點(diǎn)Q ?若存在求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,為橢圓上的一個(gè)動(dòng)點(diǎn),弦、分別過(guò)焦點(diǎn),當(dāng)垂直于軸時(shí),恰好有

(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè).
①當(dāng)點(diǎn)恰為橢圓短軸的一個(gè)端點(diǎn)時(shí),求的值;
②當(dāng)點(diǎn)為該橢圓上的一個(gè)動(dòng)點(diǎn)時(shí),試判斷是否為定值?
若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,,是拋物線(為正常數(shù))上的兩個(gè)動(dòng)點(diǎn),直線AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且

(Ⅰ)求證:直線AB過(guò)拋物線C的焦點(diǎn);
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分) 如圖,已知橢圓的兩個(gè)焦點(diǎn)分別為,斜率為k的直線l過(guò)左焦點(diǎn)F1且與橢圓的交點(diǎn)為A,B與y軸交點(diǎn)為C,又B為線段CF1的中點(diǎn),若,求橢圓離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),上的點(diǎn),為橢圓的右焦點(diǎn),過(guò)點(diǎn)FOM的垂線與以OM為直徑的圓交于兩點(diǎn).
①若,求圓的方程;
②若l上的動(dòng)點(diǎn),求證:點(diǎn)在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過(guò)點(diǎn)的直線交橢圓于不同的兩點(diǎn)M、N,且滿足(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓的方程
(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

動(dòng)圓經(jīng)過(guò)定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過(guò)定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案