5.已知函數(shù)f(x)=|x2-4|+a|x-2|,x∈[-3,3].若f(x)的最大值是0,則實(shí)數(shù)a的取值范圍是(-∞,-5].

分析 由題意可得f(x)=|x2-4|+a|x-2|=|x-2|(|x+2|+a)≤0,分離參數(shù),得到a≤-|x+2|,設(shè)y=-|x+2|,x∈[-3,3].畫出圖象,結(jié)合圖象即可得到a的取值范圍.

解答 解:f(x)=|x2-4|+a|x-2|=|x-2|(|x+2|+a)≤0,
當(dāng)x=2時(shí),f(x)=0恒成立,
當(dāng)x≠2時(shí),
∴|x+2|+a≤0,
∴a≤-|x+2|,
設(shè)y=-|x+2|,x∈[-3,3].則其圖象為:
由圖象可知ymin=-5,
a≤-5,
故實(shí)數(shù)a的取值范圍是(-∞,-5],
故答案為:(-∞,-5]

點(diǎn)評(píng) 本題考查了參數(shù)的取值的范圍,關(guān)鍵是分離參數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=logax+b,f(x)恒過點(diǎn)(1,1),且f(e)=2.
(1)求f(x)的解析式;
(2)若f(x)≤kx對(duì)?x>0都成立,求實(shí)數(shù)k的取值范圍;
(3)當(dāng)x2>x1>1時(shí),證明:x2(x1-1)lnx2>x1(x2-1)lnx1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí)f(x)>0,對(duì)任意的x,y∈(0,+∞),f(x)+f(y)=f(x•y)成立,若數(shù)列{an)滿足a1=f(1),且f(an+1)=f(2an+1),n∈N*,則a2017的值為( 。
A.22014-1B.22015-1C.22016-1D.22017-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a∈R,函數(shù)f(x)=ex-a(x+1)的圖象與x軸相切.
(1)求f(x)的單調(diào)區(qū)間;
(2)若x>1時(shí),f(x)>mx2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:$\sqrt{(lo{g}_{2}5)^{2}-6lo{g}_{2}5+9}$+log23-log2${\;}^{\frac{12}{5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)y=f(x)在R上單調(diào)遞減,且f(t2)-f(t)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ln(x+$\sqrt{1+{x}^{2}}$)+$\frac{3{e}^{x}+1}{{e}^{x}+1}$在區(qū)間[-k,k](k>0)上的最大值為M,最小值為m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,已知a1=$\frac{1}{3}$,an+1=$\frac{1}{3}$an-$\frac{2}{{3}^{n+1}}$,n∈N*,設(shè)Sn為{an}的前n項(xiàng)和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp,Sq,Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.集合A={1,3,a},B={1,a2},問是否存在這樣的實(shí)數(shù)a,使得B⊆A,且A∩B={1,a}.若存在,求出實(shí)數(shù)a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案