20.計(jì)算:$\sqrt{(lo{g}_{2}5)^{2}-6lo{g}_{2}5+9}$+log23-log2${\;}^{\frac{12}{5}}$.

分析 利用乘法公式與對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:原式=(3-log25)+log23-log2${\;}^{\frac{12}{5}}$
=3+$lo{g}_{2}\frac{3}{5×\frac{12}{5}}$
=3-2
=1.

點(diǎn)評(píng) 本題考查了乘法公式與對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}的前n和為Sn,若an=2n(n∈N*),則數(shù)列{$\frac{1}{S_n}}\right.$}的前n項(xiàng)和為(  )
A.$\frac{n}{n+1}$B.$\frac{n-1}{n}$C.$\frac{n+1}{n}$D.$\frac{n}{n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=($\sqrt{3}$sinx+cosx)cosx-$\frac{1}{2}$.
(Ⅰ)用五點(diǎn)作圖法作出函數(shù)f(x)在x∈[0,π]上的簡(jiǎn)圖.
(Ⅱ)若f($\frac{α}{2}$+$\frac{π}{6}$)=$\frac{3}{5}$,-$\frac{π}{2}$<α<0,求sin(2α-$\frac{π}{4}$)的值.
(III)若?x∈[0,$\frac{π}{2}$],都有f(x)-c≤0,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)F(x)=g(x)+h(x)=ex,且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若對(duì)任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,2$\sqrt{2}$]B.(-∞,2$\sqrt{2}$)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=2x-$\frac{x+2}{x-1}$的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=|x2-4|+a|x-2|,x∈[-3,3].若f(x)的最大值是0,則實(shí)數(shù)a的取值范圍是(-∞,-5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A≠B,A∪B={-3,4},A∩B={-3},求實(shí)數(shù)b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},則集合(∁UN)∩M=(  )
A.{2}B.{1,3}C.{2,5}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,如果2b=a+c,∠B=30°,△ABC的面積為$\frac{3}{2}$,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案