10.若函數(shù)y=f(x)在R上單調(diào)遞減,且f(t2)-f(t)<0,求t的取值范圍.

分析 由條件利用函數(shù)的單調(diào)性,可得 t2>t,由此求得t的取值范圍.

解答 解:∵函數(shù)y=f(x)在R上單調(diào)遞減,且f(t2)-f(t)<0,即f(t2)<f(t),
∴t2>t,即  t(t-1)>0,求得 t<0,或t>1,
即t的取值范圍為{t|t<0,或t>1}.

點評 本題主要考查函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.樣本中共有5個個體,其值分別為a,0,1,2,3,若該樣本的平均值為1,求樣本方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)c>0,|x-1|<$\frac{c}{3}$,|y-1|<$\frac{c}{3}$,求證:|2x+y-3|<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合U={x|-3≤x<2},M={x|-1<x<1},∁UN={x|0<x<2},那么集合M∪N={x|-3≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=|x2-4|+a|x-2|,x∈[-3,3].若f(x)的最大值是0,則實數(shù)a的取值范圍是(-∞,-5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)是奇函數(shù),且定義域為(-∞,0)∪(0,+∞).若x<0時,f(x)=-x-1.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)f(x)=x2+bx+c,且f(-3)=f(1),f(0)=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=f(x)-(4+2a)x+2,x∈[1,2],求函數(shù)g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}中,a4=2,a5=5,則lga1+lga2+…+lga8等于( 。
A.6B.4C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={1,2,3,4,5,6,7},A={3,5},B={4,6,7},則(∁UA)∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,4}

查看答案和解析>>

同步練習(xí)冊答案