某企業(yè)甲,乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
(1) (2)詳見解析
解析試題分析:(1)首先設(shè)出至少有一種新產(chǎn)品研發(fā)成功為事件A,包含情況較多,所以要求該事件的概率,考慮求其對立事件,即沒有一種新產(chǎn)品研發(fā)成功,根據(jù)獨(dú)立試驗(yàn)同時(shí)發(fā)生的概率計(jì)算方法即可求的對立事件的概率,再利用互為對立事件概率之間的關(guān)系,即和為,即可求的相應(yīng)的概率.
(2)根據(jù)題意,研發(fā)新產(chǎn)品的結(jié)果分為四種情況,利用獨(dú)立試驗(yàn)同時(shí)發(fā)生的概率計(jì)算方法分別得到每種情況的概率,再根據(jù)題意算出此時(shí)的利潤,即可得到關(guān)于利潤的分布列,再利用概率與對應(yīng)的利潤成績之和即可得到數(shù)學(xué)期望.
(1)解:設(shè)至少有一組研發(fā)成功的事件為事件且事件為事件的對立事件,則事件為新產(chǎn)品都沒有成功,因?yàn)榧?乙成功的概率分別為,則,再根據(jù)對立事件概率之間的概率公式可得,所以至少一種產(chǎn)品研發(fā)成功的概率為.
(2)由題可得設(shè)該企業(yè)可獲得利潤為,則的取值有,,,,即,由獨(dú)立試驗(yàn)同時(shí)發(fā)生的概率計(jì)算公式可得:
;;
;;
所以的分布列如下:
則數(shù)學(xué)期望.
考點(diǎn):分布列 數(shù)學(xué)期望 概率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某中學(xué)在運(yùn)動(dòng)會(huì)期間舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的,已知小明每次投籃投中的概率都是.
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).學(xué)科網(wǎng)設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分)隨機(jī)將這2n個(gè)連續(xù)正整數(shù)分成A,B兩組,每組n個(gè)數(shù),A組最小數(shù)為,最大數(shù)為;B組最小數(shù)為,最大數(shù)為,記
(1)當(dāng)時(shí),求的分布列和數(shù)學(xué)期望;
(2)令C表示事件與的取值恰好相等,求事件C發(fā)生的概率;
(3)對(2)中的事件C,表示C的對立事件,判斷和的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次。某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•重慶)某市公租房的房源位于A、B、C三個(gè)片區(qū),設(shè)每位申請人只申請其中一個(gè)片區(qū)的房源,且申請其中任一個(gè)片區(qū)的房源是等可能的,求該市的4位申請人中:
(I)沒有人申請A片區(qū)房源的概率;
(II)每個(gè)片區(qū)的房源都有人申請的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)張三選擇方案甲抽獎(jiǎng),李四選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,若X≤3的概率為,求;
(2)若張三、李四兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場投6個(gè)球,至少投進(jìn)4個(gè)球且最后2個(gè)球都投進(jìn)者獲獎(jiǎng);否則不獲獎(jiǎng). 已知教師甲投進(jìn)每個(gè)球的概率都是.
(1)記教師甲在每場的6次投球中投進(jìn)球的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)求教師甲在一場比賽中獲獎(jiǎng)的概率;
(3)已知教師乙在某場比賽中,6個(gè)球中恰好投進(jìn)了4個(gè)球,求教師乙在這場比賽中獲獎(jiǎng)的概率;教師乙在這場比賽中獲獎(jiǎng)的概率與教師甲在一場比賽中獲獎(jiǎng)的概率相等嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為1,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com