【題目】已知正三棱柱的正(主)視圖和側(左)視圖如圖所示,設,的中心分別為, ,現(xiàn)將此三棱柱繞直線旋轉(zhuǎn),射線旋轉(zhuǎn)所成角為弧度(可以取到任意一個實數(shù)),對應的俯視圖的面積為,則函數(shù)的最大值為__________,最小正周期為__________.

【答案】 8

【解析】由題意可知,正三棱柱的底面三角形的高為,正三角形的邊長為2

俯視圖是矩形,當此三棱柱繞直線OO旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應的俯視圖,底面正三角形的邊在俯視圖中為矩形的邊長時,俯視圖的面積最大,令俯視圖的面積為S,則S的最大值為:2×4=8.

因為正三角形的內(nèi)角均為,所以函數(shù)S(x)的最小正周期為.

點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一輛汽車在某段路程中的行駛速度與時間的關系如下圖:

(Ⅰ)求圖中陰影部分的面積,并說明所求面積的實際意義;

(Ⅱ)假設這輛汽車的里程表在汽車行駛這段路程前的讀數(shù)為,試將汽車行駛這段路程時汽車里程表讀數(shù)表示為時間的函數(shù),并求出當汽車里程表讀數(shù)為時,汽車行駛了多少時間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實數(shù)a的值;

(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線與曲線滿足下列兩個條件:()直線在點處與曲線相切; ()曲線在點附近位于直線的兩側,則稱直線在點處“切過”曲線.下列命題正確的是__________.(寫出所有正確命題的編號)

直線在點處“切過”曲線;

直線在點處“切過”曲線;

直線在點處“切過”曲線;

直線在點處“切過”曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求實數(shù)k的值;

(2)判斷函數(shù)fx)在(3,+∞)上的單調(diào)性,并利用定義證明;

(3)解關于x的不等式f(2x+6)>f(4x+3×2x+3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,點是棱、的中點, 是底面上(含邊界)一動點,滿足,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,且橢圓經(jīng)過點, ,拋物線過點.

Ⅰ)求、的標準方程;

Ⅱ)請問是否存在直線滿足條件:

①過的焦點;②與交不同兩點、且滿足.

若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex-2+e2-x,若實數(shù)x1x2滿足x1x2,x1+x2<4且(x1-2)(x2-2)<0,則下列結論正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)fx)滿足f(2x)=x2-2x

(Ⅰ)求函數(shù)y=fx)的解析式;

(Ⅱ)若關于x的方程fx)=在(1,4)上有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案