8.已知△ABC中,$|{\overrightarrow{BC}}|=8,\overrightarrow{AB}•\overrightarrow{AC}=-9$,D為邊BC的中點(diǎn),則$|{\overrightarrow{AD}}|$=$\sqrt{7}$.

分析 利用數(shù)量積的性質(zhì)和向量的平行四邊形法則即可得出.

解答 解:如圖,

$|\overrightarrow{BC}{|}^{2}=(\overrightarrow{BC})^{2}=(\overrightarrow{AC}-\overrightarrow{AB})^{2}$=$|\overrightarrow{AC}{|}^{2}-2\overrightarrow{AC}•\overrightarrow{AB}+|\overrightarrow{AB}{|}^{2}=64$,
∴$\overrightarrow{AC}{|}^{2}+|\overrightarrow{BC}{|}^{2}=46$$|\overrightarrow{AC}{|}^{2}+|\overrightarrow{BC}{|}^{2}=46$.
∴$|\overrightarrow{AD}{|}^{2}=\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})^{2}$=$\frac{1}{4}(|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AC}{|}^{2}+2\overrightarrow{AB}•\overrightarrow{AC})$=$\frac{1}{4}(46-18)=7$.
∴$|{\overrightarrow{AD}}|$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.

點(diǎn)評(píng) 本題考查了數(shù)量積的性質(zhì)和向量的平行四邊形法則,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.A,B,C,D,E等5名同學(xué)坐成一排照相,要求學(xué)生A,B不能同時(shí)坐在兩旁,也不能相鄰而坐,則這5名同學(xué)坐成一排的不同坐法共有60種.(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x+y≤10}\\{x≥3}\\{y≥6}\end{array}\right.$,則點(diǎn)集A(x,y)表示的區(qū)域的面積為$\frac{1}{2}$;目標(biāo)函數(shù)z=x-y的取值范圍是[-4,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若扇形的圓心角為$\frac{2}{3}$π弧度,r=2,則扇形的面積是( 。
A.$\frac{8}{3}$πB.$\frac{4}{3}$C.$\frac{3}{2}π$D.$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓的兩焦點(diǎn)坐標(biāo)分別是(-2,0)、(2,0),并且過點(diǎn)(2$\sqrt{3}$,$\sqrt{3}$),則該橢圓的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.動(dòng)點(diǎn)P在直線x+y-4=0上,動(dòng)點(diǎn)Q在直線x+y=8上,則|PQ|的最小值為( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4x-2,x≥0}\\{{x^2}+4x-2,x<0}\end{array}}\right.$,則對(duì)任意x1,x2,x3∈R,若0<|x1|<|x2|<2<|x3|,則下列不等式一定成立的是( 。
A.f(x1)-f(x2)>0B.f(x1)-f(x3)>0C.f(x1)-f(x2)<0D.f(x1)-f(x3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+2≥0}\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到0時(shí),動(dòng)直線x+y=a掃過A中的那部分區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函數(shù)y=xg(x)的單調(diào)區(qū)間;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(結(jié)果用t表示);
(Ⅲ)關(guān)于x的不等式g(x)-$\frac{a}{2}$f(x)≤($\frac{3}{2}$a-1)x-1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案