【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

【答案】(1)函數(shù)的遞增區(qū)間為,函數(shù)的遞減區(qū)間為;(2;(3)見解析.

【解析】試題分析:(1)先求導(dǎo)數(shù),再確定導(dǎo)函數(shù)在定義區(qū)間上零點(diǎn)情況:當(dāng)k≤0時(shí),導(dǎo)函數(shù)恒大于零,為增函數(shù);當(dāng)k0時(shí),由一個(gè)零點(diǎn)x=,先減后增(2)不等式恒成立問題,一般轉(zhuǎn)化Wie對(duì)應(yīng)函數(shù)最值問題,即,結(jié)合(1)的單調(diào)性情況,可得k0f=ln≤0解得k≥1,(3)利用導(dǎo)數(shù)證明不等式,一般方法為構(gòu)造恰當(dāng)函數(shù),利用其增減性進(jìn)行證明:因?yàn)?/span>k=1時(shí),fx≤0恒成立,即lnx﹣1)<x﹣2,令,則,代入疊加得證

試題解析:(I∵fx=lnx﹣1﹣kx﹣1+1,(x1

∴f′x=﹣k,

當(dāng)k≤0時(shí),f′x)>0恒成立,故函數(shù)在(1,+∞)為增函數(shù),

當(dāng)k0時(shí),令f′x=0,得x=

當(dāng)f′x)<0,即1x時(shí),函數(shù)為減函數(shù),

當(dāng)f′x)>0,即x時(shí),函數(shù)為增函數(shù),

綜上所述,當(dāng)k≤0時(shí),函數(shù)fx)在(1,+∞)為增函數(shù),

當(dāng)k0時(shí),函數(shù)fx)在(1)為減函數(shù),在(,+∞)為增函數(shù).

)由(1)知,當(dāng)k≤0時(shí),f′x)>0函數(shù)fx)在定義域內(nèi)單調(diào)遞增,fx≤0不恒成立,

當(dāng)k0時(shí),函數(shù)fx)在(1,)為減函數(shù),在(,+∞)為增函數(shù).

當(dāng)x=時(shí),fx)取最大值,f=ln≤0

∴k≥1,即實(shí)數(shù)k的取值范圍為[1,+∞

)由(2)知k=1時(shí),fx≤0恒成立,即lnx﹣1)<x﹣2

1﹣

===

x=3,4,5…nn+1累加得

+…++++…+=,(n∈N,n1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差大于0,且,是方程的兩根,數(shù)列的前項(xiàng)和為,且.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,試比較的大小,并用數(shù)學(xué)歸納法給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)如圖,設(shè)直線將坐標(biāo)平面分成四個(gè)區(qū)域(不含邊界),若函數(shù)的圖象恰好位于其中一個(gè)區(qū)域內(nèi),判斷其所在的區(qū)域并求對(duì)應(yīng)的的取值范圍;

(2)當(dāng)時(shí),求證:,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次猜燈謎活動(dòng)中,共有20道燈謎,兩名同學(xué)獨(dú)立競(jìng)猜,甲同學(xué)猜對(duì)了12個(gè),乙同學(xué)猜對(duì)了8個(gè),假設(shè)猜對(duì)每道燈謎都是等可能的,試求:

1)任選一道燈謎,恰有一個(gè)人猜對(duì)的概率;

2)任選一道燈謎,甲、乙都沒有猜對(duì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.

(1)求的交點(diǎn)到極點(diǎn)的距離;

(2)設(shè)交于點(diǎn),交于點(diǎn),當(dāng)上變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于疫情影響,今年我們學(xué)校開展線上教學(xué),高一年級(jí)某班班主任為了了解學(xué)生上網(wǎng)學(xué)習(xí)時(shí)間,對(duì)本班40名學(xué)生某天上網(wǎng)學(xué)習(xí)時(shí)間進(jìn)行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個(gè)小組的頻率分別是0.15,0.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.

1)這一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生有多少人?

2)這40位同學(xué)的線上平均學(xué)習(xí)時(shí)間是多少?

3)如果只用這40名學(xué)生這一天上網(wǎng)學(xué)習(xí)時(shí)間作為樣本去推斷該校高一年級(jí)全體學(xué)生該天的上網(wǎng)學(xué)習(xí)時(shí)間,這樣推斷是否合理?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會(huì)對(duì)校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測(cè),得到如下統(tǒng)計(jì)表:

噪音值(單位:分貝)

頻數(shù)

(1)根據(jù)該統(tǒng)計(jì)表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點(diǎn)值作代表).

(2)根據(jù)國(guó)家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過分貝,視為重度噪音污染;環(huán)境噪音值不超過分貝,視為度噪音污染.”如果把由上述統(tǒng)計(jì)表算得的頻率視作概率,回答下列問題:

(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.

(ii)學(xué)校要舉行為期天的“漢字聽寫大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列抽取樣本的方式屬于簡(jiǎn)單隨機(jī)抽樣的個(gè)數(shù)為( )

①從無限多個(gè)個(gè)體中抽取100個(gè)個(gè)體作為樣本.

②盒子里共有80個(gè)零件,從中選出5個(gè)零件進(jìn)行質(zhì)量檢驗(yàn).在抽樣操作時(shí),從中任意拿出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后再把它放回盒子里.

③從20件玩具中一次性抽取3件進(jìn)行質(zhì)量檢驗(yàn).

④某班有56名同學(xué),指定個(gè)子最高的5名同學(xué)參加學(xué)校組織的籃球賽.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;

2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案