精英家教網 > 高中數學 > 題目詳情
14.判斷下列角與象限,不正確的是( 。
A.135°  第二象限B.361°   第一象限C.900°  第二象限D.-421°  第三象限

分析 根據角的終邊位置,做出判斷即可.

解答 解:135°  第二象限,正確,
361°   第一象限,正確,
900°=720°+180°,軸線角,故C不正確,
-421°=-720°+299°,第四象限,正確,
故選:C

點評 本題主要考查終邊相同的角的定義和表示方法,象限角、象限界角的定義,屬于基礎題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

8.在如圖所示的三角形空地中,欲建一個面積不小于200m2的內接矩形花園(陰影部分),則其邊長x(單位:m)的取值范圍是[10,20].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.在區(qū)間(0,1)上隨機地取兩個數,則兩數之和小于$\frac{4}{3}$的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函數f(x)為奇函數,求實數a的值;
(2)若函數f(x)在區(qū)間[-1,1]上是增函數,求實數a的值組成的集合A;
(3)設關于x的方程f(x)=$\frac{1}{x}$的兩個非零實根為x1,x2,試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.函數y=-lg(x+1)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.圓的半徑為6cm,則圓心角為30°的扇形面積為3π.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(1,0),且點$P(1,\frac{3}{2})$在橢圓上.
(1)求該橢圓的方程;
(2)過橢圓上異于其頂點的任意一點Q作圓x2+y2=3的兩條切線,切點分別為M,N(M,N不在坐標軸上),若直線MN在x軸,y軸上的截距分別為m,n,證明$\frac{a^2}{n^2}+\frac{b^2}{m^2}$為定值;
(3)若P1,P2是橢圓C1:$\frac{x^2}{a^2}+\frac{{3{y^2}}}{b^2}$=1上不同的兩點,P1P2⊥x軸,圓E過P1,P2且橢圓C1上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓C1是否存在過左焦點F1的內切圓?若存在,求出圓心E的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)當sinθ=-$\frac{1}{2}$時,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調函數,且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

同步練習冊答案