9.已知函數(shù)f(x)=ex(2x-1)-a(x-1)有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(0,1)C.(4e${\;}^{\frac{3}{2}}$,+∞)D.(0,1)∪(4e${\;}^{\frac{3}{2}}$,+∞)

分析 判斷y=ex(2x-1)的單調(diào)性,作出y=ex(2x-1)與y=a(x-1)的函數(shù)圖象,根據(jù)圖象交點個數(shù)和導(dǎo)數(shù)的幾何意義得出a的范圍.

解答 解:令f(x)=0得ex(2x-1)=a(x-1),
令g(x)=ex(2x-1),則g′(x)=ex(2x+1),
∴當(dāng)x<-$\frac{1}{2}$時,g′(x)<0,當(dāng)x>-$\frac{1}{2}$時,g′(x)>0,
∴g(x)在(-∞,-$\frac{1}{2}$)上單調(diào)遞減,在(-$\frac{1}{2}$,+∞)上單調(diào)遞增,
作出g(x)與y=a(x-1)的函數(shù)圖象如圖所示:

設(shè)直線y=a(x-1)與g(x)的圖象相切,切點為(x0,y0),
則$\left\{\begin{array}{l}{{y}_{0}=a({x}_{0}-1)}\\{{y}_{0}={e}^{{x}_{0}}(2{x}_{0}-1)}\\{a={e}^{{x}_{0}}(2{x}_{0}+1)}\end{array}\right.$,解得x0=0,y0=-1,a=1,或x0=$\frac{3}{2}$,y0=2e${\;}^{\frac{3}{2}}$,a=4e${\;}^{\frac{3}{2}}$,
∵f(x)有兩個不同的零點,
∴g(x)與y=a(x-1)的函數(shù)圖象有兩個交點,
∴0<a<1或a>4e${\;}^{\frac{3}{2}}$.
故選D.

點評 本題考查了函數(shù)單調(diào)性的判斷,函數(shù)零點與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項a1,a2,…,an(n∈N*)組成集合An={a1,a2,…,an},從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),例如:對于數(shù)列{2n-1},當(dāng)n=1時,A1={1},T1=1;n=2時,A2={1,3},T1=1+3,T2=1•3;
(1)若集合An={1,3,5,…,2n-1},求當(dāng)n=3時,T1,T2,T3的值;
(2)若集合An={1,3,7,…,2n-1},證明:n=k時集合Ak的Tm與n=k+1時集合Ak+1的Tm(為了以示區(qū)別,用Tm′表示)有關(guān)系式Tm′=(2k+1-1)Tm-1+Tm,其中m,k∈N*,2≤m≤k;
(3)對于(2)中集合An.定義Sn=T1+T2+…+Tn,求Sn(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下面一組等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根據(jù)上面等式猜測S2n-1=(4n-3)(an+b),則a2+b2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,在學(xué)習(xí)積極性高的25名學(xué)生中有7名不太主動參加班級工作,而在積極參加班級工作的24名學(xué)生中有6名學(xué)生學(xué)習(xí)積極性一般.
(1)填寫下面列聯(lián)表;
積極參加班級工作不太主動參加班級工作合計
學(xué)習(xí)積極性高
學(xué)習(xí)積極性一般
合計
(2)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(3)試運用獨立性檢驗的思想方法分析:能否在犯錯誤概率不超過0.001的前提下認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系.
(觀測值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓E:(x+$\sqrt{3}$)2+y2=16,點F($\sqrt{3}$,0),P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)直線l過點(1,1),且與軌跡Γ交于A,B兩點,點M滿足$\overrightarrow{AM}$=$\overrightarrow{MB}$,點O為坐標(biāo)原點,延長線段OM與軌跡Γ交于點R,四邊形OARB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體的三視圖如圖所示,則它的體積為( 。
A.$\frac{20}{3}$B.$\frac{40}{3}$C.$\frac{8}{3}$D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積為( 。
A.8B.8+4$\sqrt{10}$C.2$\sqrt{10}$+$\sqrt{13}$D.4$\sqrt{10}$+2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教
(1)4個人分到甲學(xué)校,2個人分到乙學(xué)校,1個人分到丙學(xué)校,有多少種不同的分配方案?
(2)一所學(xué)校去4個人,另一所學(xué)校去2個人,剩下的一個學(xué)校去1個人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l:kx-y-3=0與圓O:x2+y2=4交于A、B兩點且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,則k=( 。
A.2B.±$\sqrt{2}$C.±2D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案