【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得, , , ,其中為抽取的第個(gè)零件的尺寸, .
(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)從這一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本 的相關(guān)系數(shù), .
【答案】(1)見解析;(2)(i)見解析;(ii).
【解析】試題分析:(1)依公式求;(2)(i)由,得抽取的第13個(gè)零件的尺寸在以外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查;(ii)剔除第13個(gè)數(shù)據(jù),則均值的估計(jì)值為10.02,方差為0.09.
試題解析:(1)由樣本數(shù)據(jù)得的相關(guān)系數(shù)為
.
由于,因此可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小.
(2)(i)由于,由樣本數(shù)據(jù)可以看出抽取的第13個(gè)零件的尺寸在以外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ii)剔除離群值,即第13個(gè)數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)為,這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值的估計(jì)值為10.02.
,
剔除第13個(gè)數(shù)據(jù),剩下數(shù)據(jù)的樣本方差為,
這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的標(biāo)準(zhǔn)差的估計(jì)值為.
點(diǎn)睛:解答新穎的數(shù)學(xué)題時(shí),一是通過轉(zhuǎn)化,化“新”為“舊”;二是通過深入分析,多方聯(lián)想,以“舊”攻“新”;三是創(chuàng)造性地運(yùn)用數(shù)學(xué)思想方法,以“新”制“新”,應(yīng)特別關(guān)注創(chuàng)新題型的切入點(diǎn)和生長(zhǎng)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人從一魚池中捕得120條魚,做了記號(hào)之后,再放回池中,經(jīng)過適當(dāng)?shù)臅r(shí)間后,再?gòu)某刂胁兜?00條魚,結(jié)果發(fā)現(xiàn)有記號(hào)的魚為10條(假定魚池中不死魚,也不增加),則魚池中大約有魚( 。
A.120條
B.1200條
C.130條
D.1000條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù)f(x)= +2.
(1)求函數(shù)f(x)的最小正周期;
(2)設(shè)銳角△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若f(A)=2, ,求角A和邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣sin2x+ .
(1)求f(x)的最小正周期值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的最值及取最值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)P(an , Sn)在函數(shù)f(x)= x2+ x上,已知b1=1,3bn﹣2bn﹣1=0(n≥2,n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)是否存在整數(shù)m,M,使得m<Tn<M對(duì)任意正整數(shù)n恒成立,且M﹣m=9,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點(diǎn)向左平移 個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,且g(﹣x)=g(x),則( )
A.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
B.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
C.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
D.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.
(Ⅰ)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1與平面B1EC所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|2x﹣1|,定義f1(x)=x,fn+1(x)=f(fn(x)),已知函數(shù)g(x)=fm(x)﹣x有8個(gè)零點(diǎn),則m的值為( )
A.8
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)k(x)=f(x)﹣h(x),若函數(shù)k(x)在[1,3]上恰有兩個(gè)不同零點(diǎn)求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com