【題目】已知函數(shù)f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)k(x)=f(x)﹣h(x),若函數(shù)k(x)在[1,3]上恰有兩個(gè)不同零點(diǎn)求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:∵f′(x)=2x﹣ ,令f′(x)=0,∵x>0,∴x=1,

所以f(x)的極小值為1,無極大值


(2)解:∵

x

(0,1)

1

(1,+∞)

f′(x)

_

0

+

f(x)

1

又∵k(x)=f(x)﹣g(x)=﹣2lnx+x﹣a,

∴k′(x)=﹣ +1,

若k′(x)=0,則x=2

當(dāng)x∈[1,2)時(shí),f′(x)<0;

當(dāng)x∈(2,3]時(shí),f′(x)>0.

故k(x)在x∈[1,2)上遞減,在x∈(2,3]上遞增.

,∴ ,∴2﹣2ln2<a≤3﹣2ln3.

所以實(shí)數(shù)a的取值范圍是:(2﹣2ln2,3﹣2ln3]


【解析】(I)先在定義域內(nèi)求出f′(x)=0的值,再討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來確定極值;(2)先求出函數(shù)k(x)的解析式,然后研究函數(shù)k(x)在[1,3]上的單調(diào)性,根據(jù)函數(shù)k(x)在[1,3]上恰有兩個(gè)不同零點(diǎn),建立不等關(guān)系 ,最后解之即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得, , ,其中為抽取的第個(gè)零件的尺寸,

(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小).

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

(ⅰ)從這一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?

(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)

附:樣本 的相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點(diǎn)且B1M=2,點(diǎn)N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求單調(diào)區(qū)間;
(2)求最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1927年德國漢堡大學(xué)的學(xué)生考拉茲提出一個(gè)猜想:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),對(duì)它乘3再加1,如果它是偶數(shù),對(duì)它除以2,這樣循環(huán),最終結(jié)果都能得到1.該猜想看上去很簡單,但有的數(shù)學(xué)家認(rèn)為“該猜想任何程度的解決都是現(xiàn)代數(shù)學(xué)的一大進(jìn)步,將開辟全新的領(lǐng)域至于如此簡單明了的一個(gè)命題為什么能夠開辟一個(gè)全新的領(lǐng)域,這大概與它其中蘊(yùn)含的奇偶?xì)w一思想有關(guān).如圖是根據(jù)考拉茲猜想設(shè)計(jì)的一個(gè)程序框圖,則①處應(yīng)填寫的條件及輸出的結(jié)果分別為

A. 是偶數(shù)?;6 B. 是偶數(shù)?;8

C. 是奇數(shù)?;5 D. 是奇數(shù)?;7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 為正三角形,平面平面, , , .

(Ⅰ)求證:平面平面

(Ⅱ)求三棱錐的體積;

(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=﹣3x2+a(6﹣a)x+b,a,b為實(shí)數(shù).
(1)當(dāng)b=﹣6時(shí),解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>0的解集為(﹣1,3),求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案