3.已知命題p:方程x2-mx+1=0有實數(shù)解,命題q:指數(shù)函數(shù)f(x)=(1-m)x是增函數(shù),若p或q為真命題,求實數(shù)m的取值范圍.

分析 分別求出p,q為真時m的范圍,取并集即可.

解答 解:若方程x2-mx+1=0有實數(shù)解,
則△=m2-4≥0,解得:m≥2或m≤-2,
∴p為真時,m≥2或m≤-2,
若指數(shù)函數(shù)f(x)=(1-m)x是增函數(shù),
則1-m>1,解得:m<0,
∴q為真時,m<0,
若p或q為真命題,則p真或q真,
故m的范圍是(-∞,0)∪[2,+∞).

點評 本題考查了復(fù)合命題的判斷,考查二次函數(shù)、指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+ax2+$\frac{3}{2}$x+$\frac{3}{2}$a(a∈R).
(1)若函數(shù)f(x)的圖象上有與x軸平行的切線,求a的取值范圍
(2)若f'(-1)=0,
①求f(x)的單調(diào)區(qū)間.
②證明對任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知曲線y=$\frac{1}{3}$x3+$\frac{4}{3}$
(1)求曲線在x=2處的切線方程;
(2)求曲線過點(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)隨機變量ξ服從正態(tài)分布N(4,9),若P(ξ>a)=P(ξ<a-4),則實數(shù)a的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點P(1,3),與直線2x-5y+1=0平行的直線的點向式方程是$\frac{x-1}{5}=\frac{y-3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=x2+6x,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x2一4x-1.
(1)若將f(x)的圖象向右移動2個單位,再向下移動1個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式;
(2)寫出函數(shù)y=g(|x|)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若正數(shù)a,b滿足a2b=$\frac{1}{2}$,則a+b的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.研究表明,成年人的身高和體重具有線性相關(guān)性.小明隨機調(diào)查了五名成年人甲乙丙丁戊的身高和體重,得到的結(jié)果如下表所示,根據(jù)表格中數(shù)據(jù)回答下列問題.
編號
身高x(cm)166170172174178
體重y(kg)5560656570
(1)從這五名成年人中任選兩名做問卷調(diào)查,求選出的兩名成年人的身高超過了170cm且體重均超過60kg的概率;
(2)求身高x與體重y的回歸直線方程y=bx+a,并據(jù)此推測身高為180cm的成年人的體重大約是多少?

查看答案和解析>>

同步練習(xí)冊答案