(12分)如圖,已知圓C:,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足=,?=0,點(diǎn)N的軌跡為曲線E.

(Ⅰ)求曲線E的方程;

(Ⅱ)若過定點(diǎn)A(1,0)的直線交曲線E于不同的兩點(diǎn)G、H,

且滿足∠GOH為銳角,求直線的斜率k的取值范圍.

解析:(Ⅰ)依題PN為AM的中垂線

……………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點(diǎn)………………………………4分

a=,c=1,所以為所求…………………………………5分

(Ⅱ)設(shè)直線的方程為:y=k(x-1)代入橢圓方程:x2+2y2=2得

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個(gè)根.

……………………………………7分

依題

………………………………………9分

解得:……………………………………………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省遵義四中高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是線段EF的中點(diǎn)。
(Ⅰ)求證:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆云南省昆明一中高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點(diǎn)分別在側(cè)棱、上,且

(Ⅰ)求證:;
(Ⅱ)若,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

如圖,已知四棱錐的底面是正方形,,且,點(diǎn)分別在側(cè)棱上,且。

(Ⅰ)求證:;

(Ⅱ)若,求平面與平面所成二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

如圖,已知中,平面,

分別為上的動(dòng)點(diǎn).

(1)若,求證:平面平面

(2)若,,求平面與平面所成的銳二面角的大小.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600ABACAE

(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請(qǐng)證明你的結(jié)論;

(2)求平面EBD與平面ABC所成的銳二面角的大小。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案