分析 只要兩個(gè)向量不共線,便可作為平面內(nèi)的一組基底,從而來(lái)判斷哪組向量不共線即可,根據(jù)共線向量基本定理來(lái)判斷兩個(gè)向量是否共線:存在系數(shù)關(guān)系$\overrightarrow{a}=λ\overrightarrow$,并且$\overrightarrow≠\overrightarrow{0}$,便說(shuō)明這兩個(gè)向量共線,不存在這個(gè)關(guān)系便說(shuō)明不共線.
解答 解:能作為基底的向量需滿足不共線;
顯然①②兩組都不共線,可以作為基底;
$4\overrightarrow{{e}_{2}}-2\overrightarrow{{e}_{1}}=-2(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})$;
∴$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$與$4\overrightarrow{{e}_{2}}-\overrightarrow{2{e}_{1}}$共線,不能作為一組基底;
∴能作為平面內(nèi)所有向量的一組基底的序號(hào)為:①②.
故答案為:①②.
點(diǎn)評(píng) 考查平面上的基底的概念,清楚能作為基底的向量所滿足的條件:不共線,以及共線向量基本定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{r}{2}$ | B. | $\frac{\sqrt{3}}{2}$r | C. | $\frac{\sqrt{3}}{3}$r | D. | r |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com