19.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共線的兩個(gè)向量,給出下列四組向量:①$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;②$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$與$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$;③$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$與4$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$.其中能作為平面內(nèi)所有向量的一組基底的序號(hào)是①②.

分析 只要兩個(gè)向量不共線,便可作為平面內(nèi)的一組基底,從而來(lái)判斷哪組向量不共線即可,根據(jù)共線向量基本定理來(lái)判斷兩個(gè)向量是否共線:存在系數(shù)關(guān)系$\overrightarrow{a}=λ\overrightarrow$,并且$\overrightarrow≠\overrightarrow{0}$,便說(shuō)明這兩個(gè)向量共線,不存在這個(gè)關(guān)系便說(shuō)明不共線.

解答 解:能作為基底的向量需滿足不共線;
顯然①②兩組都不共線,可以作為基底;
$4\overrightarrow{{e}_{2}}-2\overrightarrow{{e}_{1}}=-2(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})$;
∴$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$與$4\overrightarrow{{e}_{2}}-\overrightarrow{2{e}_{1}}$共線,不能作為一組基底;
∴能作為平面內(nèi)所有向量的一組基底的序號(hào)為:①②.
故答案為:①②.

點(diǎn)評(píng) 考查平面上的基底的概念,清楚能作為基底的向量所滿足的條件:不共線,以及共線向量基本定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在四棱錐P-ABCD中:ABCD是正方形,PA⊥平面ABCD,PA=AB=a.
(1)求二面角P-CD-A的大小;
(2)求四棱錐P-ABCD的全面積;
(3)求C點(diǎn)到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.過(guò)雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦點(diǎn),傾斜角為30°的直線交雙曲線于A、B兩點(diǎn),求A,B兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{a}$•$\overrightarrow$>0,則△ABC的形狀為( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在半徑為r的半圓內(nèi)作一內(nèi)接梯形,使其底為直徑,其他三邊為圓的弦,則梯形面積最大時(shí),其上底長(zhǎng)為(  )
A.$\frac{r}{2}$B.$\frac{\sqrt{3}}{2}$rC.$\frac{\sqrt{3}}{3}$rD.r

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC中,a=3,b=$\sqrt{6}$,A=60°,
(1)求sinC;
(2)求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$(n≥2).
(1)求證:{$\frac{1}{a{\;}_{n}}$-1}為等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若bn=$\frac{2n-1}{{a}_{n}}$,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱(chēng)軸是直線x=$\frac{π}{3}$.
(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)減區(qū)間;
(3)畫(huà)出函數(shù)y=f(x)在區(qū)間[0,πI上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,B1點(diǎn)到平面ACD1的距離為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案