精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)某公司決定采用增加廣告投入和技術改造投入兩項措施來獲得更大的收益.通過對市場的預測,當對兩項投入都不大于3(百萬元)時,每投入(百萬元)廣告費,增加的銷售額可近似的用函數(百萬元)來計算;每投入x(百萬元)技術改造費用,增加的銷售額可近似的用函數(百萬元)來計算.現該公司準備共投入3(百萬元),分別用于廣告投入和技術改造投入,請設計一種資金分配方案,使得該公司的銷售額最大. (參考數據:≈1.41,≈1.73)

 

【答案】

 

解:設3百萬元中技術改造投入為x(百萬元),廣告費投入為3-x(百萬元),則廣告收入帶來的銷售額增加值為-2(3-x)2+14(3-x)(百萬元),技術改造投入帶來的銷售額增加值為-x3+2x2+5x(百萬元),所以,投入帶來的銷售額增加值F(x)=-2(3-x)2+14(3-x)-x3+2x2+5x.

整理上式得F(x)=-x3+3x+24,

因為F′(x)=-x2+3,令F′(x)=0,解得x=或x=-(舍去),

當x∈[0,),F′(x)>0,當x∈(,3]時,F′(x)<0,

所以,x=≈1.73時,F(x)取得最大值.

所以,當該公司用于廣告投入1.27(百萬元),用于技術改造投入1.73(百萬元)時,公司將有最大的銷售額.

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案