4.甲乙兩人做報(bào)數(shù)游戲,其規(guī)則是:從1開(kāi)始兩人輪流連續(xù)報(bào)數(shù),每人每次最少報(bào)1個(gè)數(shù),最多可以連續(xù)報(bào)6個(gè)(如,第一個(gè)人先報(bào)“1,2”,則另一個(gè)人可以有“3”,“3,4”,…“3,4,5,6,7,8”等六種報(bào)數(shù)方法),誰(shuí)搶先報(bào)到“100”則誰(shuí)獲勝.如果從甲開(kāi)始,則甲要想必勝,第一次報(bào)的數(shù)應(yīng)該是1,2.

分析 由條件每人一次最少要報(bào)一個(gè)數(shù),最多可以連續(xù)報(bào)7個(gè)數(shù),可知除去先開(kāi)始的個(gè)數(shù),使得后來(lái)兩人之和為8的倍數(shù)即可.

解答 解:∵至少拿1個(gè),至多拿6個(gè),
∴兩人每輪總和完全可控制的只有7個(gè),
∴把零頭去掉后,剩下的就是7的倍數(shù)了,這樣無(wú)論對(duì)手怎么拿,都可以保證每一輪(每人拿一次后)都是拿走7個(gè),即先取2個(gè),以后每次如果乙報(bào)a,甲報(bào)7-a即可,保證每一輪兩人報(bào)的和為7即可,最終只能甲搶到100.
故先開(kāi)始甲應(yīng)取2個(gè).
故答案為:1,2.

點(diǎn)評(píng) 本題考查學(xué)生合情推理的能力,考查學(xué)生的靈活轉(zhuǎn)化的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知定義在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函數(shù)f(x)是奇函數(shù),且當(dāng)x∈(0,$\frac{π}{2}$)時(shí),f(x)=$\frac{tanx}{tanx+1}$.
(1)求f(x)在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上的解析式;
(2)當(dāng)實(shí)數(shù)m為何值時(shí),關(guān)于x的方程f(x)=m在(-$\frac{π}{2}$,$\frac{π}{2}$)有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ2(3+sin2θ)=12,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù)),$α∈({0,\frac{π}{2}})$.
(1)求曲線C1的直角坐標(biāo)方程,并判斷該曲線是什么曲線;
(2)設(shè)曲線C2與曲線C1的交點(diǎn)為A,B,當(dāng)$|{PA}|+|{PB}|=\frac{7}{2}$時(shí),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知傾斜角為$\frac{π}{6}$的直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F,拋物線C上存在點(diǎn)P與x軸上一點(diǎn)Q(5,0)關(guān)于直線l對(duì)稱,則P=( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)分別為F1,F(xiàn)2,短軸的一個(gè)端點(diǎn)為點(diǎn)P,△PF1F2內(nèi)切圓的半徑為$\frac{3}$.設(shè)過(guò)點(diǎn)F2的直線l被橢圓C截得的線段為RS,當(dāng)l⊥x軸時(shí),|RS|=3
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點(diǎn)T,使得當(dāng)l變化時(shí),總有TS與TR所在直線關(guān)于x軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)T的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿足$f({e^{|{\frac{1}{2}a-1}|}})+f(-\sqrt{e})<0$,則a的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.等差數(shù)列{an}中,a1=2,公差為d≠0,Sn其前n項(xiàng)的和,且S2n=4Sn(n∈N+)恒成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知P是拋物線y2=4x上的動(dòng)點(diǎn),Q在圓C:(x+3)2+(y-3)2=1上,R是P在y軸上的射影,則|PQ|+|PR|的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x+2|+|x-3|
(1)證明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案