【題目】設橢圓)的右焦點為,右頂點為,已知,其中 為原點, 為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率.

【答案】(1);(2).

【解析】試題分析:1)根據(jù)求出a,即可求出橢圓的方程;(2)設直線的方程為,聯(lián)立橢圓方程消元得關于x的一元二次方程,利用根與系數(shù)的關系求B的坐標,根據(jù)向量垂直得到M的坐標與k的關系,由 即可求出k.

試題解析:

1)設,由,即,可得,又,所以,因此,所以橢圓的方程為.

2)設直線的斜率為,則直線的方程為,設,由方程組 消去,整理得,

解得

由題意得,從而,

由(1)知,設,有, ,

,得,所以,

解得,因此直線的方程為,

,由方程組 消去,得,

中, ,

,化簡得,即

解得,

所以直線的斜率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足 ,且a1=3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線的焦點為.

(1)若過點的直線與拋物線有且只有一個交點,求直線的方程;

(2)若直線與拋物線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調性;

2)當時,證明: 對于任意的成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.

根據(jù)該折線圖,下列結論錯誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊長分別為a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大;
(2)若 ,求2a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓內一點,直線過點且與圓交于,兩點.

(1)求圓的圓心坐標和面積;

(2)若直線的斜率為,求弦的長;

(3)若圓上恰有三點到直線的距離等于,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)若,過點的直線交曲線兩點,且,求直線的方程;

(2)若曲線表示圓時,已知圓與圓交于兩點,若弦所在的直線方程為, 為圓的直徑,且圓過原點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的 兩點.

(1)求拋物線的標準方程;

(2)如果直線過拋物線的焦點,求的值;

(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.

查看答案和解析>>

同步練習冊答案