【題目】已知函數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),證明: 對(duì)于任意的成立.

【答案】Ⅰ)當(dāng)時(shí),函數(shù)上單調(diào)遞增,在內(nèi)單調(diào)遞減;

當(dāng)時(shí),函數(shù)上單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;

當(dāng)時(shí),函數(shù)上單調(diào)遞增;

當(dāng) 單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

證明見解析.

【解析】試題分析: 對(duì)函數(shù)求導(dǎo),對(duì)分類討論函數(shù)的單調(diào)性;

構(gòu)造函數(shù),對(duì)構(gòu)造函數(shù)的兩部分, 分別求導(dǎo)討論單調(diào)性及取值范圍,則,得證。

解析:(的定義域?yàn)?/span>;.

當(dāng), 時(shí),,單調(diào)遞增;,單調(diào)遞減.當(dāng)時(shí),.

(1),,

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減;

(2)時(shí),,在內(nèi)單調(diào)遞增;

(3)時(shí),,

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減.

綜上所述,

當(dāng)時(shí),函數(shù)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;

當(dāng)時(shí),內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在 內(nèi)單調(diào)遞增;

當(dāng)時(shí),內(nèi)單調(diào)遞增;

當(dāng)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

Ⅱ)由(Ⅰ)知,時(shí),

,

,.

,

可得,當(dāng)且僅當(dāng)時(shí)取得等號(hào).

,

設(shè),則單調(diào)遞減,因?yàn)?/span>

所以在上存在使得 時(shí),時(shí),,

所以函數(shù)上單調(diào)遞增;在上單調(diào)遞減,

由于,因此,當(dāng)且僅當(dāng)取得等號(hào),

所以

對(duì)于任意的恒成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上、下頂點(diǎn)、右頂點(diǎn)、右焦點(diǎn)分別為B2B1、A、F,延長(zhǎng)B1FAB2交于點(diǎn)P,若∠B1PA為鈍角,則此橢圓的離心率e的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面

(2)若過(guò)直線的一個(gè)平面與線段分別相交于點(diǎn) (點(diǎn)與點(diǎn)均不重合),求證: ;

(3)判斷線段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=e2x+ln(x+a).
(1)當(dāng)a=1時(shí),①求f(x)在(0,1)處的切線方程;②當(dāng)x≥0時(shí),求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10A的平分線所在的直線方程為y0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年3月14日,“共享單車”終于來(lái)到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個(gè)無(wú)樁共享單車平臺(tái),開創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問(wèn)了使用共享單車的名市民,并根據(jù)這名市民對(duì)該項(xiàng)目滿意程度的評(píng)分(滿分分),繪制了如下頻率分布直方圖:

(I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評(píng)分恰好都在的概率;

(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)考核,并說(shuō)明理由.

(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中 為原點(diǎn), 為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市醫(yī)療保險(xiǎn)實(shí)行定點(diǎn)醫(yī)療制度,按照“就近就醫(yī)、方便管理” 的原則,規(guī)定參加保險(xiǎn)人員可自主選擇四家醫(yī)療保險(xiǎn)定點(diǎn)醫(yī)院和一家社區(qū)醫(yī)院作為就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險(xiǎn)人員所在地區(qū)附近有三家社區(qū)醫(yī)院,并且他們的選擇是等可能的、相互獨(dú)立的.

(1)求甲、乙兩人都選擇社區(qū)醫(yī)院的概率;

(2)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;

(3)設(shè)在4名參加保險(xiǎn)人員中選擇社區(qū)醫(yī)院的人數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1x+2y+1=0l2-2x+y+2=0,它們相交于點(diǎn)A.

(1)判斷直線l1l2是否垂直?請(qǐng)給出理由.

(2)求過(guò)點(diǎn)A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案