已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在上的極值;
(2)證明:當(dāng)時(shí),;
(3)證明: .
(1);(2)證明過程詳見解析;(3)證明過程詳見解析.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值和最值、不等式等基礎(chǔ)知識(shí),考查函數(shù)思想,考查綜合分析和解決問題的能力.第一問,將代入,得到解析式,對(duì)它求導(dǎo),列出表格,通過單調(diào)性,判斷極值;第二問,證明不等式轉(zhuǎn)化為求函數(shù)的最小值大于0;第三問,利用第二問的結(jié)論,令,利用放縮法得到,再利用對(duì)數(shù)的性質(zhì)和裂項(xiàng)相消法求和,得到所證不等式.
試題解析:(1)當(dāng)時(shí),
1分
變化如下表
, 4分+ 0 0 + ↗ 極大值 ↘ 極小值 ↗
(2)令
則 6分
∴在上為增函數(shù)。 8分
9分
(3)由(2)知 10分
令得, 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較與的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中.
(1)若在處取得極值,求常數(shù)的值;
(2)設(shè)集合,,若元素中有唯一的整數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的最小值;
(Ⅲ)若存在(是自然對(duì)數(shù)的底數(shù))使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的極值點(diǎn);
(2)若直線過點(diǎn),并且與曲線相切,求直線的方程;
(3)設(shè)函數(shù),其中,求函數(shù)在上的最小值(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線在上有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),試討論函數(shù)的單調(diào)性;
(2)證明:對(duì)任意的 ,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分共12分)已知函數(shù),曲線在點(diǎn)處切線方程為。
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求的極大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com