【題目】若有窮數(shù)列滿足,則稱數(shù)列.

(1)寫出滿足的兩個數(shù)列;

(2),,證明:數(shù)列是遞增數(shù)列的充要條件是;

(3),對任意給定的正整數(shù),是否存在數(shù)列,使得?如果存在,求出正整數(shù)滿足的條件;如果不存在,說明理由.

【答案】(1)見解析;(2)見解析;(3)時存在.時不存在,理由見解析

【解析】

1)根據(jù)以及,寫出兩個即可;

2)先證必要性,由數(shù)列是遞增數(shù)列可得是首項為1,公差為1的等差數(shù)列,根據(jù)等差數(shù)列的通項公式可得,再證必要性,根據(jù)以及等號成立的條件可得數(shù)列是遞增數(shù)列,可得,可得

(3)設,可得,可得.

(1);(答案不唯一)

(2)必要性證明:

因為遞增,所以.

充分性證明:

因為,所以,所以,

所以,

由等號成立,得到,遞增.

(3).

所以.

因為為偶數(shù),

所以為偶數(shù),.

所以當時存在.時不存在.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).

1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);

2)若從抽得的6個社區(qū)中隨機的抽取2個進行調(diào)查結果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.

)求k的取值范圍;

)設CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.

(1)求曲線的極坐標方程;

(2)在曲線上取兩點、于原點構成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列,滿足,則稱數(shù)列,并記.

1)寫出所有滿足數(shù)列;

2)若,證明:數(shù)列是遞減數(shù)列的充要條件是

3)對任意給定的正整數(shù),且,是否存在數(shù)列,使得?如果存在,求出正整數(shù)滿足的條件;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某20161~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是若張某20161~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將所有平面向量組成的集合記作,是從的對應關系,記作,其中、、都是實數(shù),定義對應關系的模為:在的條件下的最大值記作,若存在非零向量,及實數(shù)使得,則稱的一個特殊值;

1)若,求;

2)如果,計算的特征值,并求相應的;

3)若,要使有唯一的特征值,實數(shù)、、應滿足什么條件?試找出一個對應關系,同時滿足以下兩個條件:①有唯一的特征值,②,并驗證滿足這兩個條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點且,

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案