19.命題p:?x∈N,x3<x2;命題q:?a∈(0,1)∪(1,+∞),函數(shù)f(x)=loga(x-1)的圖象過點(diǎn)(2,0),則下列命題是真命題的是( 。
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

分析 分別判斷出p,q的真假,從而判斷出復(fù)合命題的真假.

解答 解:命題p:?x∈N,x3<x2,是假命題;
命題q:?a∈(0,1)∪(1,+∞),
令x-1=1,解得:x=2,此時(shí)f(2)=0,
故函數(shù)f(x)=loga(x-1)的圖象過點(diǎn)(2,0),是真命題;
故?p∧q真是真命題;
故選:C.

點(diǎn)評(píng) 本題考查了不等式以及對(duì)數(shù)函數(shù)的性質(zhì),考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cosx=$\frac{1}{3}$,-π<x<0,則角x的值為-arccos$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)$\frac{2-i}{1+{i}^{5}}$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知首項(xiàng)不為0的等差數(shù)列{an}中,前n項(xiàng)和為Sn,滿足a4=2a2,且S1,S2,S4-1成等比數(shù)列.
(Ⅰ)求an和Sn;
(Ⅱ)記${b_n}=\frac{1}{S_n}$,數(shù)列{bn}的前項(xiàng)和Tn.若3m-8≤Tn<2m-1對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)f(x)的圖象是由y=sinx的圖象通過怎樣平移而得到的;
(3)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2,a3的值;
(2)求an的通項(xiàng)公式及S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.平面凸四邊形ABCD,AB=2,BC=3,CD=4,AD=5,則此四邊形的最大面積為$2\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x+2},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f(-3)=)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A為△ABC的最小內(nèi)角,若向量$\overrightarrow{a}$=(cos2A,sin2A),$\overrightarrow$=($\frac{1}{co{s}^{2}A+1}$,$\frac{1}{si{n}^{2}A-2}$),則$\overrightarrow{a}$$•\overrightarrow$的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-1,$\frac{1}{2}$)C.[-$\frac{2}{5}$,$\frac{1}{2}$)D.[-$\frac{2}{5}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案