12.已知m、n為空間兩條不同直線,α、β、γ為不同的平面,則下列命題正確的是(  )
A.若α⊥β,a?α,則a⊥βB.若α⊥γ,β⊥γ,則α∥β
C.若α∥β,a?α,b?β,則a∥bD.若m⊥α,m∥n,n∥β,則α⊥β

分析 A,只有和交線垂直,才能得線面垂直;
B,α⊥β,β⊥γ,α與γ的位置關(guān)系不確定;
C,若α∥β,a?α,b?β,則a、b平行或異面;
D,若m⊥α,m∥n,n∥β,面β內(nèi)一定存在直線存在與直線m平行,

解答 解:對于A,只有和交線垂直,才能得線面垂直,故錯;
對于B,∵α⊥β,β⊥γ,α與γ即可以平行,也可以相交,故錯;
對于C,若α∥β,a?α,b?β,則a、b平行或異面,故不正確;
對于D,若m⊥α,m∥n,n∥β,面β內(nèi)一定存在直線存在與直線m平行,則α⊥β,正確;
故選:D

點評 本題考查空間直線的位置關(guān)系中平行的判定,直線與平面平行、垂直的性質(zhì)定理等,要注意判定定理與性質(zhì)定理的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過圓x2+y2=5上一點M(2,-1)作圓的切線,則該切線的方程為2x-y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖所示的程序框圖.當(dāng)輸入x=ln$\frac{1}{2}$時,輸出的y值為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(ωx+φ)+1(ω>0,0≤φ≤$\frac{π}{2}$)的圖象相鄰兩條對稱軸之間的距離為π,且在x=$\frac{π}{3}$時取得最大值2,若f(α)=$\frac{8}{5}$,且$\frac{π}{3}$<α<$\frac{5π}{6}$,則sin(2α+$\frac{π}{3}$)的值為( 。
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖:三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,M是AB上的動點,CB=CA=CC1=2.
(Ⅰ)若點M是AB中點,證明:平面MCC1⊥平面ABB1A1;
(Ⅱ)判斷點M到平面A1B1C的距離是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)Sn是數(shù)列{an}的前n項和,已知S2=3,且an+1=Sn+1,n∈N*,則a1=1;Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.給定橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0).設(shè)t>0,過點T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點,O為坐標(biāo)原點.
(Ⅰ)用a,b,k,t表示△OMN的面積S,并說明k,t應(yīng)滿足的條件;
(Ⅱ)當(dāng)k變化時,求S的最大值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,且z1=1+i,則z2=( 。
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點E是線段DB上的一動點,問點E在何位置時,二面角E-AM-D的余弦值為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案