已知平面向量
a
b
的夾角為60°,|
a
|=3,|
b
|=2,若(3
a
+5
b
)⊥(m
a
-
b
),則實數(shù)m的值等于
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:運用向量的數(shù)量積的定義,求出
a
b
,再由向量垂直的條件,運用向量的平方等于模的平方,化簡整理即可求出m.
解答: 解:∵平面向量
a
,
b
的夾角為60°,|
a
|=3,|
b
|=2,
a
b
=3×2×cos60°=3,
∵(3
a
+5
b
)⊥(m
a
-
b
),
∴(3
a
+5
b
)•(m
a
-
b
)=0,
即3m|
a
|2+(5m-3)
a
b
-5|
b
|2=0,
∴27m+3(5m-3)-20=0,
∴m=
29
42

故答案為:
29
42
點評:本題考查向量的數(shù)量積的定義,向量垂直的條件,考查基本的運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

一布袋里放有大小相等的兩個白球和一個黑球,有放回地每次摸取一個球,定義數(shù)列{an}:an=
-1,第n次摸到黑球
1,第n次摸到白球
,記X為數(shù)列{an}的前4項之和S4,則EX=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱半徑是2,則是一個與圓柱的軸成45°角的平面截圓柱面所得截痕曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
2
,
3
2
),
b
=(-
3
2
,
1
2
),
c
=(cosθ,sinθ),則(
a
-
c
)•(
b
-
c
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校有5名同學(xué)參加A、B、C三所學(xué)校的自主招生考試,每人限報一所高校,若這三所學(xué)校中每個學(xué)校都至少有1名同學(xué)報考,那么這5名同學(xué)不同的報考方法種數(shù)共有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P={(x,y)丨|x|≤2,y∈R},Q={(x,y)||y|≤3,x∈R},若S=P∩Q,則集合S中元素的組成圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=2,a=
3
,b+c=3(b>c),求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
x-log2x,若x0是函數(shù)y=f(x)的零點,且0<x1<x0,則有(  )
A、f(x1)>0
B、f(x1)<0
C、f(x1)=0
D、f(x1)>0與f(x1)<0均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序運行后輸出的結(jié)果為( 。
A、10B、9C、6D、5

查看答案和解析>>

同步練習冊答案