5.已知f(x)=$\frac{(a•{4}^{x}+2)cosx}{{2}^{x}}$為奇函數(shù),則a的值為( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 根據(jù)函數(shù)是奇函數(shù),由f(0)=0建立方程關(guān)系進行求解即可.

解答 解:∵函數(shù)的定義域是R,且函數(shù)f(x)是奇函數(shù),
∴f(0)=0,
即f(0)=$\frac{(a+2)cos0}{{2}^{0}}$=a+2=0,
則a=-2,
故選:A

點評 本題主要考查函數(shù)奇偶性的應(yīng)用,根據(jù)函數(shù)奇偶性的性質(zhì),利用f(0)=0是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.大學(xué)生小李畢業(yè)后自主創(chuàng)業(yè),買了一輛小型卡車,運輸農(nóng)產(chǎn)品.在輸葡萄收獲季節(jié),運輸1車葡萄.當天批發(fā)完獲利潤500元,當天未批發(fā)或有剩余,一律按每車虧損300元計算.根據(jù)以往市場調(diào)查,得到葡萄收獲季節(jié)市場需求量的直方圖,如圖所示,今年葡萄收獲的季節(jié),小李給當?shù)剞r(nóng)民定了160車葡萄,以X(單位:車,100≤X≤200)表示今年葡萄收獲季節(jié)的市場需求量,Y(單位:元)表示今年葡萄銷售的利潤.
(1)將Y表示為X的函數(shù);
(2)根據(jù)直方圖估計利潤Y不少于64000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量X∈[100,120),則X=110,且X=110的概率等于需求量落入[100,120)的頻率),求Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知{an}是首項為2且公差不為0的等差數(shù)列,若a1,a3,a6成等比數(shù)列,則{an}的前9項和等于(  )
A.26B.30C.36D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等比數(shù)列{an}中,a2a4a6=64,且a8=64,則a10=256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α是三角形的最大內(nèi)角,且cos2α=$\frac{1}{2}$,則$\frac{1-tanα}{1+tanα}$的值為( 。
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.3-$\sqrt{3}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知Sn是等差數(shù)列{an}的前n項和,S3+S6=18,則S5=( 。
A.14B.10C.9D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列說法:①條件語句中ELSE必須存在;
②條件語句中END IF可以省略;
③條件語句中ELSE的存在需根據(jù)情況而定;
④條件語句中END IF不能省略.
其中說法正確的是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}前n項和為Sn,首項為a1,且$\frac{1}{2}$,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列{$\frac{1}{_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a>0,則${∫}_{-a}^{a}$$\frac{xdx}{1+cosx}$=( 。
A.1B.0C.2aD.$\frac{3}{4}$a

查看答案和解析>>

同步練習(xí)冊答案