若非空集合S⊆{1,2,3,4,5}滿足若a∈S,則6-a∈S,寫出這樣的所有S.
考點(diǎn):元素與集合關(guān)系的判斷
專題:集合
分析:根據(jù)若a∈S,則必有6-a∈S,有1必有5,有2必有4,然后利用列舉法列出所求可能即可.
解答: 解:∵若a∈S,則必有6-a∈S
∴有1必有5,有2必有4
則S={3};{1,5};{2,4};{1,3,5};{2,3,4};{1,2,4,5};{1,2,3,4,5}
∴所有滿足上述條件的集合S共7個(gè)
點(diǎn)評(píng):本題主要考查了子集的定義,以及集合的限制條件下求滿足條件的集合,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2py(p>0)過焦點(diǎn)F的直線l交拋物線于A、B兩點(diǎn),O為原點(diǎn),若△AOB面積最小值為8.
(1)求P值
(2)過A點(diǎn)作拋物線的切線交y軸于N,
FM
=
FA
+
FN
,則點(diǎn)M在一定直線上,試證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個(gè)幾何體的三視圖如圖,則該幾何體的體積為( 。
A、π+4
B、
π+4
3
C、
2π+4
3
D、π+
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足xy=4,則x2+4y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-1>0},B={x|x>1},則A∩B等于( 。
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、{x|x>1或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,AB=
2
,AF=1,M是線段EF的中點(diǎn).
(1)求證:AM∥平面BDE;
(2)在線段AC上是否存在一點(diǎn)P,使直線PF與AD所成角為60°?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①經(jīng)過空間任意一點(diǎn)都可作唯一一個(gè)平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=A,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對(duì)棱互相垂直,則第三組對(duì)棱也一定互相垂直;
⑤一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)角的平面角相等或互補(bǔ),
其中正確命題的序號(hào)是
 
(請(qǐng)?zhí)钌纤心阏J(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M為圓C:x2+y2+6x-4y+12=0上的動(dòng)點(diǎn),拋物線E:y2=4x的準(zhǔn)線為l,點(diǎn)P是拋物線E上的任意一點(diǎn),記點(diǎn)P到l的距離為d,則d+|PM|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),例如[π]=3,[-1.08]=-2,已知函數(shù)f(x)=x-[x],則下列結(jié)論中正確的是( 。
A、f(sin
11π
6
)=-
1
2
B、方程f(x)=
1
2
有且僅有一個(gè)解
C、f(x)是周期函數(shù)
D、f(x)是增函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案