18.設(shè)p是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若|PF1|=5,則|PF2|=( 。
A.1或5B.1或9C.1D.9

分析 根據(jù)題意,由雙曲線的方程可得其漸近線方程,結(jié)合題意可得$\frac{3}{a}$=$\frac{3}{2}$,解可得a的值,可得雙曲線的標(biāo)準(zhǔn)方程,由|PF1|=5分析可得P在雙曲線的左支上,由雙曲線的定義即可得答案.

解答 解:根據(jù)題意,雙曲線的方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1,則其漸近線方程為y=±$\frac{3}{a}$x,
又由雙曲線的一條漸近線方程為3x-2y=0,即y=$\frac{3}{2}$x,
則有$\frac{3}{a}$=$\frac{3}{2}$,解可得a=2,
則雙曲線的方程為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,其中a=2,b=3,則c=$\sqrt{4+9}$=$\sqrt{13}$,
若|PF1|=5,則P在雙曲線的左支上,
則|PF2|=5+2a=9;
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),涉及雙曲線的標(biāo)準(zhǔn)方程,由雙曲線的漸近線的方程求出a是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+x)dx=(  )
A.π+1B.π-1C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)P為曲線C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ-2sinθ)=15,則點(diǎn)P到直線l的距離的最小值$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)設(shè)α,β為銳角,cosα=$\frac{{\sqrt{5}}}{5}$,sin(α+β)=$\frac{{22\sqrt{5}}}{65}$,求 f($\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)為F(1,0).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),過點(diǎn)F作直線l與橢圓E交于M,N兩點(diǎn),若$\overrightarrow{OM}•\overrightarrow{ON}=0$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.為了解高一年級(jí)1200名學(xué)生的視力情況,采用系統(tǒng)抽樣的方法,從中抽取容量為60的樣本,則分段間隔為(  )
A.10B.20C.40D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,∠A=60°,∠B=45°,BC=$\sqrt{3}$,那么AC等于( 。
A.$\sqrt{6}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,E為AD的中點(diǎn),AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求證:平面PCD⊥平面PAD;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在點(diǎn)M,使得AM⊥平面PBE?若存在,求出$\frac{DM}{DC}$的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案