在正四棱錐S-ABCD中,側面與底面所成的角為,則它的外接球半徑R與內切球半徑之比為(。

A.5               B.             C.10              D.

 

【答案】

D

【解析】

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大小;
(3)在△ABC內是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:云南省昆明八中2012屆高三上學期期中考試數(shù)學理科試題 題型:022

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為________

查看答案和解析>>

科目:高中數(shù)學 來源:2012年內蒙古赤峰市元寶山二中高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

正三棱錐S-ABC的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,球心為O,M是線段SO的中點,過M與SO垂直的平面分別截三棱錐S-ABC和球所得平面圖形的面積比為   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西省吉安市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖,在正四棱錐S-ABCD中,AB=,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大;
(3)在△ABC內是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案