分析 (1)利用已知an,n+1,an+1成等差數(shù)列,得遞推關(guān)系式,分類討論可得通項(xiàng)公式.
(2)討論n的奇偶性,分別求和.
解答 解:(1){an}滿足a1=0,且an,n+1,an+1成等差數(shù)列.
∴an+an+1=2(n+1),a2=4.
n≥2時(shí),an-1+an=2n.
∴an+1-an-1=2.
∴數(shù)列{an}奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,公差為2.
n為奇數(shù)時(shí),an=0+$(\frac{n+1}{2}-1)$×2=n-1.
n為偶數(shù)時(shí),an=4+$(\frac{n}{2}-1)$×2=n+2.
故an=$\left\{\begin{array}{l}{n-1,n為奇數(shù)}\\{n+2,n為偶數(shù)}\end{array}\right.$.
(2)n為偶數(shù)時(shí),數(shù)列{an}的前n項(xiàng)和Sn=(a1+a2)+(a3+a4)+…+(an-1+an)
=2×2+2×4+…+2×n=2×$\frac{\frac{n}{2}(2+n)}{2}$=$\frac{n(n+2)}{2}$.
n為奇數(shù)時(shí),數(shù)列{an}的前n項(xiàng)和Sn=Sn-1+an=$\frac{(n-1)(n+1)}{2}$+n-1=$\frac{(n-1)(n+3)}{2}$.
∴Sn=$\left\{\begin{array}{l}{\frac{n(n+2)}{2},n為偶數(shù)}\\{\frac{(n-1)(n+3)}{2},n為奇數(shù)}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式與求和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π-2}{2}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,e4) | C. | (e4,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
$\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^{10}{({x_i}-\bar x)^2}$ | $\sum_{i=1}^{10}{({w_i}-\bar w)^2}$ | $\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$ | $\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$ |
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com